Multimodal Traffic Management

David Gundlegård, Anna Danielsson, Clas Rydergren, Nikolaos Tsanakas, Matej Cebecauer, Wilco Burghout, Erik Jenelius

Funded by Trafikverket
Collaboration between LiU, KTH and Stockholm Traffic Management Center
Project Team

Anna Danielsson David Gundlegård Nikolaos Tsanakas Clas Rydergren Rasmus Ringdahl

Matej Cebecauer Wilco Burghout Erik Jenelius
Multimodal Traffic Management

• Research targets
 – Better understanding of multimodal travel patterns
 – New methods for multimodal demand estimation and prediction
 – New methods for predicting route and mode choice
 – Synergies of multimodal traffic management

• Incident decision support
 – State prediction during incidents (including effects on route and mode choice)
 – Which traveller flows are affected most by the incident (and affect the incident the most)?
 – Which multimodal rerouting alternatives are available for these traveller flows?
 – How does the rerouting affect the future traffic state?
Overview of computational modules

- Exploratory analysis of multimodal data
- Data-driven route and mode choice modeling
- Multimodal demand estimation
- Scenario evaluation and analytics

MMTM
Stockholm Dataset

- GPS trips
- Public transport tickets
- Mobile network data
- Portal data
- Link counts
Data-driven route choice modeling

Anna Danielsson
Data-driven route choice modeling

• Route choice modeling for traffic management
 – Estimate and predict traffic state
 – Estimate and predict traffic demand
 – Give relevant and targeted traveler information

• First approach using GPS probe data for estimation of a Logit-based discrete choice model
 – Which features x_{ik} affects the route choice?
 • Travel time, distance, capacity, #turns, #traffic lights...
Data-driven route set

- Choice set (set or routes considered by the traveller) constructed from the set of all observed alternatives

- The first two weeks constitutes a training data set (blue) and the next two weeks a test data set (orange).
Route attribute statistics

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Explanation</th>
<th>Unit</th>
<th>Average value of all routes in data set</th>
<th>Difference within OD pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>min diff</td>
</tr>
<tr>
<td>ttmean</td>
<td>observed mean traveltime</td>
<td>min</td>
<td>1.24</td>
<td>0.06</td>
</tr>
<tr>
<td>ttfree</td>
<td>free flow traveltime</td>
<td>min</td>
<td>0.80</td>
<td>0</td>
</tr>
<tr>
<td>delay</td>
<td>relative delay ((ttmean - ttfree) / ttfree)</td>
<td>share</td>
<td>0.57</td>
<td>0</td>
</tr>
<tr>
<td>rlength</td>
<td>length of route</td>
<td>km</td>
<td>0.78</td>
<td>0</td>
</tr>
<tr>
<td>numlinks</td>
<td>number of links in route (proxy for number of intersections)</td>
<td></td>
<td>5.42</td>
<td>0</td>
</tr>
<tr>
<td>p_city</td>
<td>percentage of route within the city center</td>
<td>share</td>
<td>0.33</td>
<td>0</td>
</tr>
<tr>
<td>p_major_roads</td>
<td>percentage of route using major roads</td>
<td>share</td>
<td>0.75</td>
<td>0</td>
</tr>
<tr>
<td>cf</td>
<td>commonality factor indicating how similar to the alternatives the route is</td>
<td></td>
<td>0.74</td>
<td>0</td>
</tr>
</tbody>
</table>
Route choice modeling

- Attribute selection
 - `p_major_roads`, `numlinks`, `p_city` and `rlength` are the most important attributes.

- Model estimation
 - Weighting attributes against each other.

- Model evaluation
 - Comparison of estimated and observed route choices.

- Understanding model
 - Analysis of example OD-pairs.
Conclusions so far

• A good route choice model can give important insights for traffic management.

• Insights from the experiments
 – Dataset promising for network-wide analysis and modeling of route choice
 – Route sets in training and test data are similar, thus building up the choice set of the historically observed routes is promising.
 – Attributes seems sufficient for some OD-pairs
Data-driven route choice modeling
Public Transport
Matej Cebecauer
Public transport OD - routes

• Data
 Anonymized individual travel diaries inferred from smart-card data

• Result
 Dynamic OD matrices from 2015 – 2022 considering routes

• Next
 Data-driven PT route choice modeling
Explorative analysis of multimodal demand data

Matej Cebecauer
Multimodal day-types

Day-types:
- Representative typical days

How we reveal representative day-types:

1. Clustering / pattern recognition
 - that groups the days based on their similarities, such
 - Minimize the variance/distance/dissimilarity among days in each cluster
 - Maximize the variance/distance/dissimilarity to days in other clusters

2. Representative of the cluster is the recognized day-type
 - Could be an average day of the cluster
Multimodal day-types

MCS sensors

499 – sensors
66 – 15 minutes intervals

PT dynamic OD matrices

49 – zones (2,400 OD pairs)
38 – 30 minutes intervals

Map background: OpenStreetMap.org
Multimodal day-types
Day-type similarity – calendar evaluation
– Clustering using year 2017

Flow

MCS sensors

Speed

PT OD matrices

School holidays Public holidays Midsummer Special days or de facto holiday Bridging day
Multimodal day-types
Day-type similarity – external evaluation

• Similarity in short-term prediction application performance
 – Historical mean prediction model
 • Day-types recognized in 2017
 • Predicting for all days in 2018
 • 1 hour into future
 • Past hour to classify day-type for prediction
 – Mean Absolute Error (MAE)
 – Mean Percentage Absolute Error ignoring 0 (MAPE0)
What next?
What next?

• Adding more data sources
• Reveal multimodal day-types
 – Is the robustness of day-types sufficient for traffic management?
• Route choice modeling
 – Route set generation needs to be added to the process to provide better estimates for unseen situations
 – A mode choice component will be added to analyze multimodal traffic management
• Scenario evaluation
 – Simulation Model
 – Support for dynamic changes in network, demand and supply