SMART III: Simulation and Modeling of Automated Road Transport

Ivan Postigo
CTR Day - 2022
The purpose of the SMART project

• Identify the limitations of current traffic models to include automated vehicles.

• Further develop current traffic models to enable analysis of traffic systems including automated vehicles.

• Evaluate the effects on traffic systems due to driving automation for two application cases.

• Contribute to long-term knowledge building.
Background

• Traffic simulation is an important tool used for traffic analysis.

• Microscopic traffic simulation models describe the movements and interactions of all individual vehicles or travelers.

• Several studies have used microscopic traffic simulation to investigate the impact caused by automated vehicles.
Microscopic modeling of automated driving

Research questions:
• How to model automated driving?
• How will the interaction between conventional and automated vehicles affect traffic systems?
Aspects to consider for modeling automated driving

A. Authorities
B. User Acceptance / User Preferences
C. Vehicle System
D. Vehicle Sensor-based Perception
E. Vehicle Connectivity
F. Physical / Digital Infrastructure

DDTs controlled by automation
Operational and Safety Constraints

DDTs controlled by human
Modes of perception

Human

Sensor-based

Connectivity (i)

Connectivity (ii)
Perception Tasks for Automated Driving: A Conceptual Model for Microscopic Traffic Simulation

- Develop a conceptual model for the perception tasks and that ensures consistency in perception and transparency about assumptions.

- Capture differences in perception performance between sensor-based perception, perception based on connectivity and human perception.
Perception for automated driving

- How is the information obtained/what are the sensing capabilities?
 - Mode of perception
 - Range – Accuracy
- Which vehicles/objects can be perceived?
- What information?
 - Position – Speed – Intentions
- When is the information obtained?
 - Frequency – Latency – Delay

Capture in a consistent way the differences between human perception, sensor-based perception and connectivity-based perception.
Change in microscopic driving model

Current Approach

Driving Model

- Perception
 - \(\Omega_1 \)
 - Car Following
 - \(\Psi_1, \tau_1 \)
- Perception
 - \(\Omega_2 \)
 - Lane Changing
 - \(\Psi_2, \tau_2 \)

Action

Proposed Approach

Driving Model

- Perception
 - \(\hat{\Omega}, \tau^p \)
 - Car Following
 - \(\Psi_1, \tau^{d_1} \)
 - Lane Changing
 - \(\Psi_2, \tau^{d_2} \)

Action, \(\tau^{ex} \)

- \(\Omega \): state variables
- \(\Psi \): submodel parameters
- \(\tau \): delay (reaction time)

Change to:

- \(\hat{\Omega} \): estimated state variables
- \(\tau \): disaggregated delay

\[
\tau = \tau^p + \tau^d + \tau^{ex}
\]
Modeling perception performance

- Accuracy -- ϵ
- Delay -- τ
- Range
 - Weather – Time of the day – Visibility

$$\hat{\Omega}(t) = f(\Omega, P_n)$$
$$f(\Omega, P) = \Omega(t - \tau^p_n) \pm \epsilon^\Omega_p$$

- Ω : state variables
- $\hat{\Omega}$: estimated state variables
- P : perception mode
- τ^p : perception delay
- ϵ : error
Future work

• Implement perception model in open-source traffic simulator.

• Obtain numerical results.
Thanks for your attention!

Ivan Postigo
ivan.postigo@liu.se
ivan.Postigo@vti.se