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Dependability

• Dependability is a property of the system to deliver its 
services in a trustworthy way

• It encompasses a wide set of requirements: 
• safety, reliability, security etc.

• Traditional dependability engineering: the goal is to 
demonstrate that the design is safe (reliable, secure etc.) 
under the given (constrained) environment model



Autonomous systems

• An autonomous system is capable of delivering 
its services in a highly independent way.

• A fully autonomous system can 
• Gain information about the environment
• Work for an extended period without human 

intervention
• Move either all or part of itself throughout its 

operating environment without human 
assistance

• Essentially, it is an autonomous mobile agent with a high degree of 
self-awareness and self-management (and hence, non-determinism)

But it is also a safety-critical system!



Formal methods in high-assurance system 
engineering

• Formal methods are mathematically rigorous techniques for the 
specification, development, and verification of SW and HW 
systems
• Mathematical analysis is typically required for good system 

design

• Formal methods come in different flavors:
• Lightweight FM – a formal specification precedes the actual 

design

• Correct-by-construction development frameworks: refinement-
based development (e.g., Event-B) and formal verification

• Theorem proving: domain is formalized as a theory and 
verified by the machine-checked proofs



Formal modelling and verification in Event-B
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• Event-B is a formal state-based modelling 
framework based on set theory and first order 
logic

• System state is defined by a collection of 
variables (can be functions, relations etc)

• The dynamic system behaviour is described in 
terms of guarded commands (events):

WHEN predicate THEN assignment
stimulus -> response

• Events define state transitions (can also be 
non-deterministic)

• Model invariant defines a set of allowed (safe) 
states
• Each event should preserve the invariant

Machine SimpleRobot
Variables xposition
Invariant
xposition∊NAT ˄
L_Edge ≤ xposition≤R_Edge
Initialisaton xposition:=0
Events
StepLeft ≝
WHEN xpositon≥L_Edge+1 
THEN xposition :=xposition-1

StepRight ≝
WHEN xpositon≤R_Edge-1 
THEN xposition :=xposition+1

StepAnywhere≝
WHEN L_Edge < xposition<R_Edge
THEN 
xposition : ∊ [xposition-1, xposition+1]



Formal modelling and verification in Event-B: 
Rodin platform
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• Rodin platform: Eclipse-based integrated 
modelling environment

• Automates refinement process
– Supports strong interplay between modelling and 

verification;
– Reactive: analysis tools are automatically invoked in the 

background whenever a change in a model is made

• The platform is extendable by plug-ins 
extending  the Event-B language and 
verification techniques

• Automated support for strongest evidence of safety –
safety invariant

• Support for model checking

• High degree of automation of verification efforts

invariant

State space defined by types 



Correct-by-construction development: 
refinement
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• Abstract specification: 
defines essential 
behavior and invariant 
properties of system

• Refinement transform 
specification to add 
new behavior, reduce 
non-determinism

• The properties of the 
abstract specification 
are preserved  
throughout the entire 
refinement chain

• For example, we can add a variable 
yposition to our SimpleRobot
specification and define movement 
along y axis. 

• Requires to prove that initial 
invariant is maintained, i.e., 
we refined implicit skip
statements – superposition 
refinement

• We might also decide to replace 
rectangular coordinates with polar –
data refinement

• We need to define the invariant 
connecting new and old state space  
r × cos( θ ) ˄y = r × sin( θ ) and  
prove that it is always preserved

Abstract model

Detailed model

Implementation



Iterative model-based development in Event-B

• Each iteration
– aims at defining and formalising a 

certain subset of system requirements 
– incorporating a feedback provided by 

the formalisation into the requirements 
definition.

• Refinement step: introduction 
of new variables and events

• Proofs verify that refined model 
adheres to the abstract model

Requirements 
elicitation Specification, verification, 

modification
Integration of 

feedback
New requirements 

subset



Systems engineering and software 
verification: systems approach

A system requirement SysReq is a 
relation between a set M of 
monitored variables and a 
corresponding set C of controlled 
variables:

SysReq ⊆	M	x	C

A software requirement SofReq is a 
relation between a set I of input 
variables and a corresponding set 0
of output variables:

SOFREQ ⊆	I	x	O

we need to provide satisfaction 
arguments in the form:
{SOFREQ,ASM, DOM}  I= SysReq

DOM Domain properties
ASM Assumptions

Parnas and Madley (1995) Four-variable model



Formal modelling of safety-critical systems

• Formal modelling: avoid design faults
• Fault tolerance: hardware random faults, residual faults are 

unavoidable,  
• Need to guarantee deterministic behavior in different 

failure modes

• Modelling failure occurrence and refining according to 
different failure modes allows us to derive properties 
preserved under different failure conditions

• Augmenting model with probabilistic data (failure rate) we 
enable quantitative verification
• For example, express properties like probability of 

catastrophic failure within n time units



Achieving Dependable Autonomy
• New challenges: 

• Open and complex operating environment
• Continuous evolution (e.g., based on learning)
• Inherent uncertainty – internal (complex failure modes, component 

interaction) and external (complex operating environment)

• Trustworthy system functioning becomes dependant on new complex 
factors:
• Networks: is QoS sufficient for hard real-time safety-critical 

functions?
• Security: can data for making safety-critical decisions be trusted ?
• Resources: are the components involved into implementing safety-

critical functions have sufficient power level?

• Building an exhaustive model of the environment at design time is 
unfeasible and hence run-time verification is important

• Safety depends on many factors, hence multi-aspect models are 
required 



Different degrees of uncertainty

• Unforeseen types of hazards 
• We do not know what we do not know, e.g., unforeseen 

scenarios or feature interactions  
• Foreseen types of hazards 

• We do not know for sure, e.g., operational 
environment, coverage of different situations 

• Known hazards
• Sufficient observability and controllability 



Strategic, tactic and active safety

• Strategic: plan ahead to maximise safety 
• Safety-aware mission planning

• Tactic: monitor and re-plan at run-time
• Run-time system  and environment monitoring and 

planning

• Active (or emergency): mitigate and remove hazard 
occurrence
• Akin human reflexes: hazard detection and default 

“safety escape” 



Modelling and design challenging

• We need to combine design and run-time efforts to monitor safety and 
resource efficiency and adapt to operating conditions at run-time

• Need for multi-layered dependability management that combines design 
and run-time safety mechanisms
• Complex, tangled and hence, requires formal modelling

• Formal modelling
• Modelling and verification of layered architecture enabling run-time 

adaptation
• Specification and verification of safety conditions
• Design and verification of a safety net to cope with unforeseen 

hazards and around AI components

• Run-time planning algorithms:
• Design high performance planning algorithms capable of controlling 

autonomous agents at run-time in safe and efficient way



Self-adaptive architecture
• We adopt MAPE-K architectural pattern:

• Cyclic behaviour
• At each cycle: M-Monitor, A-Analyse, P-Plan, E- Execute 

over shared K-Knowledge 



Adaptive architecture of multi-agent 
control: system level 



Adaptive architecture of fleet control: 
agent’s level

• At agent’s level MAPE-K 
architectural pattern is used to 
implement “emergency 
response” – confine damage or 
mitigate hazard impact

• Safety reflex mechanism is 
designed to cope with 
unexpected hostile changes in 
the environment or mistakes in 
AI-based planning

• Safety properties are distributed through different architectural layers 
and have intricate interdependencies



Modelling and verifying multi-agent control 
architecture

A chain of model refinement:
• Abstract specification: abstract representation of a 

progress of a mission execution;
• 1st refinement: abstract model of system-level MAPE-K 

cycle;
• 2nd refinement: introducing abstract behaviour of agents; 

conditions triggering re-calculating planning and 
adaptation logic;

• 3rd refinement: introducing model of dynamically emerging 
hazards and change of modes

• 4th refinement: modelling agent’s MAPE-K loop
• Result: formally verified safety requirement (in out case it 

was collision avoidance)



Developing planning algorithm

• Formal modelling allowed us to demonstrate safety of 
proposed architectural solution

• We also modelled unreliable communication and hand-
over from failed to functioning agent

• However, we need an algorithm capable of generating 
route planning for the fleet in run-time

• The main requirement to the algorithm:  
• High performance 
• Minimising resource consumption 
• Maximasing safety 

• Optimisation problem: solved using AI



Work in progress and challenges ahead 
(1/2)

• Autonomous systems are connected systems. Hence security is in the picture
• We are working on formal modelling of safety-security interactions

– Which safety properties are violated under different attacks?
• Open challenge: safety in presence of untrusted agents – deriving 

architectures and protocols

• Deriving run-time safety monitors from system model
• Monitoring against unknown hazards
• Safety monitoring in presence of evolution (due to learning)
• Change-sensitive model verification

• Conditional safety modelling based on QoS
• Can we define a two-way approach: can safety-critical application 

reconfigure network to achieve the required QoS?
• Quantitative rely-guarantee approach
• Resource negotiations and coordination



Work in progress and challenges ahead 
(2/2)

• Multi-aspect modelling
• Resource-explicit modelling
• Projection of system-level model into different types of 

models: verification of timing, resources, quantitative 
dependability guarantees

• Flexible adaptive architectures

• Integration with simulation platforms
• Modelling and verifying safety of behaviour trees 
• Verification of different robotic library components

• Fundamental challenge: support for compositionality and 
defining different abstractions layers



Thank you!


