
KTH ROYAL INSTITUTE
OF TECHNOLOGY

Dependability assurance of autonomous
systems: an integrated formal approach

Elena Troubitsyna
KTH – Royal Institute of Technology, Sweden

Dependability

• Dependability is a property of the system to deliver its
services in a trustworthy way

• It encompasses a wide set of requirements:
• safety, reliability, security etc.

• Traditional dependability engineering: the goal is to
demonstrate that the design is safe (reliable, secure etc.)
under the given (constrained) environment model

Autonomous systems

• An autonomous system is capable of delivering
its services in a highly independent way.

• A fully autonomous system can
• Gain information about the environment
• Work for an extended period without human

intervention
• Move either all or part of itself throughout its

operating environment without human
assistance

• Essentially, it is an autonomous mobile agent with a high degree of
self-awareness and self-management (and hence, non-determinism)

But it is also a safety-critical system!

Formal methods in high-assurance system
engineering

• Formal methods are mathematically rigorous techniques for the
specification, development, and verification of SW and HW
systems
• Mathematical analysis is typically required for good system

design

• Formal methods come in different flavors:
• Lightweight FM – a formal specification precedes the actual

design

• Correct-by-construction development frameworks: refinement-
based development (e.g., Event-B) and formal verification

• Theorem proving: domain is formalized as a theory and
verified by the machine-checked proofs

Formal modelling and verification in Event-B

2022-09-22 5

• Event-B is a formal state-based modelling
framework based on set theory and first order
logic

• System state is defined by a collection of
variables (can be functions, relations etc)

• The dynamic system behaviour is described in
terms of guarded commands (events):

WHEN predicate THEN assignment
stimulus -> response

• Events define state transitions (can also be
non-deterministic)

• Model invariant defines a set of allowed (safe)
states
• Each event should preserve the invariant

Machine SimpleRobot
Variables xposition
Invariant
xposition∊NAT ˄
L_Edge ≤ xposition≤R_Edge
Initialisaton xposition:=0
Events
StepLeft ≝
WHEN xpositon≥L_Edge+1
THEN xposition :=xposition-1

StepRight ≝
WHEN xpositon≤R_Edge-1
THEN xposition :=xposition+1

StepAnywhere≝
WHEN L_Edge < xposition<R_Edge
THEN
xposition : ∊ [xposition-1, xposition+1]

Formal modelling and verification in Event-B:
Rodin platform

2022-09-22 6

• Rodin platform: Eclipse-based integrated
modelling environment

• Automates refinement process
– Supports strong interplay between modelling and

verification;
– Reactive: analysis tools are automatically invoked in the

background whenever a change in a model is made

• The platform is extendable by plug-ins
extending the Event-B language and
verification techniques

• Automated support for strongest evidence of safety –
safety invariant

• Support for model checking

• High degree of automation of verification efforts

invariant

State space defined by types

Correct-by-construction development:
refinement

2022-09-22 7

• Abstract specification:
defines essential
behavior and invariant
properties of system

• Refinement transform
specification to add
new behavior, reduce
non-determinism

• The properties of the
abstract specification
are preserved
throughout the entire
refinement chain

• For example, we can add a variable
yposition to our SimpleRobot
specification and define movement
along y axis.

• Requires to prove that initial
invariant is maintained, i.e.,
we refined implicit skip
statements – superposition
refinement

• We might also decide to replace
rectangular coordinates with polar –
data refinement

• We need to define the invariant
connecting new and old state space
r × cos(θ) ˄y = r × sin(θ) and
prove that it is always preserved

Abstract model

Detailed model

Implementation

Iterative model-based development in Event-B

• Each iteration
– aims at defining and formalising a

certain subset of system requirements
– incorporating a feedback provided by

the formalisation into the requirements
definition.

• Refinement step: introduction
of new variables and events

• Proofs verify that refined model
adheres to the abstract model

Requirements
elicitation Specification, verification,

modification
Integration of

feedback
New requirements

subset

Systems engineering and software
verification: systems approach

A system requirement SysReq is a
relation between a set M of
monitored variables and a
corresponding set C of controlled
variables:

SysReq ⊆	M	x	C

A software requirement SofReq is a
relation between a set I of input
variables and a corresponding set 0
of output variables:

SOFREQ ⊆	I	x	O

we need to provide satisfaction
arguments in the form:
{SOFREQ,ASM, DOM} I= SysReq

DOM Domain properties
ASM Assumptions

Parnas and Madley (1995) Four-variable model

Formal modelling of safety-critical systems

• Formal modelling: avoid design faults
• Fault tolerance: hardware random faults, residual faults are

unavoidable,
• Need to guarantee deterministic behavior in different

failure modes

• Modelling failure occurrence and refining according to
different failure modes allows us to derive properties
preserved under different failure conditions

• Augmenting model with probabilistic data (failure rate) we
enable quantitative verification
• For example, express properties like probability of

catastrophic failure within n time units

Achieving Dependable Autonomy
• New challenges:

• Open and complex operating environment
• Continuous evolution (e.g., based on learning)
• Inherent uncertainty – internal (complex failure modes, component

interaction) and external (complex operating environment)

• Trustworthy system functioning becomes dependant on new complex
factors:
• Networks: is QoS sufficient for hard real-time safety-critical

functions?
• Security: can data for making safety-critical decisions be trusted ?
• Resources: are the components involved into implementing safety-

critical functions have sufficient power level?

• Building an exhaustive model of the environment at design time is
unfeasible and hence run-time verification is important

• Safety depends on many factors, hence multi-aspect models are
required

Different degrees of uncertainty

• Unforeseen types of hazards
• We do not know what we do not know, e.g., unforeseen

scenarios or feature interactions
• Foreseen types of hazards

• We do not know for sure, e.g., operational
environment, coverage of different situations

• Known hazards
• Sufficient observability and controllability

Strategic, tactic and active safety

• Strategic: plan ahead to maximise safety
• Safety-aware mission planning

• Tactic: monitor and re-plan at run-time
• Run-time system and environment monitoring and

planning

• Active (or emergency): mitigate and remove hazard
occurrence
• Akin human reflexes: hazard detection and default

“safety escape”

Modelling and design challenging

• We need to combine design and run-time efforts to monitor safety and
resource efficiency and adapt to operating conditions at run-time

• Need for multi-layered dependability management that combines design
and run-time safety mechanisms
• Complex, tangled and hence, requires formal modelling

• Formal modelling
• Modelling and verification of layered architecture enabling run-time

adaptation
• Specification and verification of safety conditions
• Design and verification of a safety net to cope with unforeseen

hazards and around AI components

• Run-time planning algorithms:
• Design high performance planning algorithms capable of controlling

autonomous agents at run-time in safe and efficient way

Self-adaptive architecture
• We adopt MAPE-K architectural pattern:

• Cyclic behaviour
• At each cycle: M-Monitor, A-Analyse, P-Plan, E- Execute

over shared K-Knowledge

Adaptive architecture of multi-agent
control: system level

Adaptive architecture of fleet control:
agent’s level

• At agent’s level MAPE-K
architectural pattern is used to
implement “emergency
response” – confine damage or
mitigate hazard impact

• Safety reflex mechanism is
designed to cope with
unexpected hostile changes in
the environment or mistakes in
AI-based planning

• Safety properties are distributed through different architectural layers
and have intricate interdependencies

Modelling and verifying multi-agent control
architecture

A chain of model refinement:
• Abstract specification: abstract representation of a

progress of a mission execution;
• 1st refinement: abstract model of system-level MAPE-K

cycle;
• 2nd refinement: introducing abstract behaviour of agents;

conditions triggering re-calculating planning and
adaptation logic;

• 3rd refinement: introducing model of dynamically emerging
hazards and change of modes

• 4th refinement: modelling agent’s MAPE-K loop
• Result: formally verified safety requirement (in out case it

was collision avoidance)

Developing planning algorithm

• Formal modelling allowed us to demonstrate safety of
proposed architectural solution

• We also modelled unreliable communication and hand-
over from failed to functioning agent

• However, we need an algorithm capable of generating
route planning for the fleet in run-time

• The main requirement to the algorithm:
• High performance
• Minimising resource consumption
• Maximasing safety

• Optimisation problem: solved using AI

Work in progress and challenges ahead
(1/2)

• Autonomous systems are connected systems. Hence security is in the picture
• We are working on formal modelling of safety-security interactions

– Which safety properties are violated under different attacks?
• Open challenge: safety in presence of untrusted agents – deriving

architectures and protocols

• Deriving run-time safety monitors from system model
• Monitoring against unknown hazards
• Safety monitoring in presence of evolution (due to learning)
• Change-sensitive model verification

• Conditional safety modelling based on QoS
• Can we define a two-way approach: can safety-critical application

reconfigure network to achieve the required QoS?
• Quantitative rely-guarantee approach
• Resource negotiations and coordination

Work in progress and challenges ahead
(2/2)

• Multi-aspect modelling
• Resource-explicit modelling
• Projection of system-level model into different types of

models: verification of timing, resources, quantitative
dependability guarantees

• Flexible adaptive architectures

• Integration with simulation platforms
• Modelling and verifying safety of behaviour trees
• Verification of different robotic library components

• Fundamental challenge: support for compositionality and
defining different abstractions layers

Thank you!

