

Autonomous Software Systems Design feat. Control Theory

Alessandro V. Papadopoulos

<u>alessandro.papadopoulos@mdu.se</u> <u>http://www.idt.mdh.se/~aps01/</u>

Sep 1st, 2022 CASTOR Software days @ KTH

Interconnected World Made of Computing Systems

Whoops, something went wrong... Netflix Streaming Error

We're having trouble playing this title right now. Please try again later or select a different title.

ulos

How Do We Tame Such Complexity?

Autonomous Software Systems Design feat. Control Theory

What is control?

Richard M. Murray

"The term *control* has many meanings and often varies between communities. In this book, we define control to be the use of algorithms and feedback in engineered systems."

-K.J. Åström & R. M. Murray, "Feedback Systems: An Introduction for Scientists and Engineers", 2017

- Widely used
- Very successful
- Seldom talked about
- Except when disaster strikes
- Why?

Easier to talk about devices than ideas Not enough attention to popularization

Control System: Conceptual Model

Control System: Block Diagram

Classical Application Areas

Robotics

Automotive

Industrial and Production

Avionics and Aerospace

Water management

Power plants

What is the common ground of these applications?

 Physics provides mathematical models for describing the behaviour of physical systems

Inputs
$$\dot{m{x}}(t) = m{f}(m{x}(t), m{u}(t), t)$$
 Outputs $m{y}(t) = m{g}(m{x}(t), m{u}(t), t)$

What Is the Physics of Computing Systems?

Research Context

Pros

- Control-based approaches are very powerful
 - Autonomous-by-design
 - Easy to implement
 - Lightweight
 - Energy-efficient
 - Mathematically groundedapproaches
 - Guarantees

Cons

- They require control experts to design
 - Can we automate this?
- They often require a model

Explicit modeling

FSE15

Filieri, Hoffmann, Maggio Automated Multi-Objective Control for Self-Adaptive Software Design

FSE16

Shevtsov, Weyns
Keep It SIMPLEX: satisfying multiple
goals with guarantees in control-based
self-adaptive systems

FSE17

Maggio, Papadopoulos, Filieri,
Hoffmann
Automated Control of Multiple Software
Goals using Multiple Actuators

Task Scheduling When a Model Does Exist

Scheduling Problem

Control-Based Scheduling

Model of the Task

Measured time = Assigned time + Discrepancy

$$x(k) = u(k-1) + d(k)$$

Controlling the Task Budget of Time

Extremely simple model

The allocated time budget of controller

$$u(k) = u(k-1) + K$$

Hard Real-Time guarantees can be provided

based on an "Integral

- measuredBudget(k))

• K is the only parameter that the range (0,1] (stability reasons that we do not discuss)

Easy to implement the scheduling strategy

CLOUD COMPUTING

Cloud Computing Applications

When the Model Is Hard To Find

Cloud computing promises an infinite capacity but...

Cloud control

- Several different problems
 - Load balancing
 - Autoscaling
 - Fault tolerance
 - Performance
 - Real-time guarantees
 - Resiliency

Workload Characterisation

Problem

- 82% of end-users give up on a lost payment transaction
- 25% of end-users leave if load time > 4s
- 1% reduced sale per 100ms load time
- 20% reduced income if 0.5s longer load time

Brownout in Cloud Systems

© Alessandro V. Papadopoulos

Brownout in Cloud Systems

Multiple Replicas Load Balancing

- Useful for
 - Scale beyond a physical machine
 - Resilience
 - Hide auto-scaling mishaps
 - Hide infrastructure failures

GOAL: Maximize Optional Content

Multiple Failures Scenario with SQF

Can One Do Better?

Control-Based Approach

- Idea: Modify the SQF policy to maximize the optional content served Θ , and minimize the queue-length q
 - ightharpoonup We measure: queue-lengths q_i , and dimmers Θ_i
 - ightharpoonup We control: queue-offsets u_i
 - lacktriangle SQF picks the replica with smallest value of q_i-u_i
 - Queue-offsets computed with a "PI-Based Heuristic" (PIBH) policy:

$$u_i(k+1) = (1-\gamma) \left[u_i(k) + \gamma_P \Delta \Theta_i(k) + \gamma_I \Theta_i(k) \right] + \gamma q_i(k)$$

Maximize the optional content

Minimize the queue length

Optional Content vs Response Time

Resiliency

Control Has Proven Useful in the Design of Autonomous Software Components

Autonomous Software Design With Control

Current Challenges

- Automate the decision-making algorithm design
- Include and model Humans-In-The-Loop
- Cross-fertilisation with other fields
 - Artificial Intelligence
 - Machine learning
 - Formal Methods
 - Real-Time Systems
- General formulation of Physics Theory of Computing Systems

Comments, Feedback, and Questions Are Welcome

This work has been supported by:

