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Philipp Haller: Background

• Associate professor at KTH (2014–2018 Assistant professor) 
– PhD 2010 EPFL, Switzerland 

• 2005–2014 Scala language team 
– 2012–2014 Typesafe, Inc. (now Lightbend, Inc.) 
– Co-author Scala language specification 

• Focus on concurrent and distributed programming  
– Creator of Scala Actors, co-author of Scala’s futures and Scala Async
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2019: ACM SIGPLAN Programming Languages Software Award for Scala 
Core contributors: 
Martin Odersky, Adriaan Moors, Aleksandar Prokopec, Heather Miller, Iulian Dragos, 
Nada Amin, Philipp Haller, Sebastien Doeraene, Tiark Rompf
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Scala Actors and Akka

https://www.lightbend.com/akka-five-year-anniversary

Scala Actors used, e.g., 
in core message queue 
system of Twitter:

https://www.lightbend.com/akka-five-year-anniversary
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The use of actors is common in industry 
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Slide from: 
Meiklejohn et al. 

“Partisan” at 
USENIX ATC ‘19



All Modern Services are Distributed

• Each of these systems is a distributed 
system itself


• User data and services scattered 
across multiple systems


• This is not suited for classic monolith 
architectures: microservices 
architecture to the rescue*

Source: Dean Wampler: Fast Data Architectures For Streaming Applications (2nd edition), O'Reilly
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*Till Rohrmann: Keynote: Rethinking how distributed applications are built. DEBS 2022.
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Failures in cloud-based distributed systems can be catastrophic.
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Reality of Distributed Systems

• Reliability: computers crash, messages get lost 
• Scalability: workloads increase or decrease 
• Cloud and edge: execution in heterogeneous environments 
• Response time: services require low latency 
• Privacy: systems manage sensitive, regulated data (GDPR, CCPA)
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We are asking too 
much of distributed software 

programmers!
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Limitations of Distributed Programming Models

Distributed Programming Patterns Guarantees Distributed Execution

Cyclic 
Dependencie

s

Dynamic 
Communication 

Topology

Dataflow 
Composition

Typed 
Communication

Request/
Reply 

with Futures

Exactly-once 
Processing

Serializable 
Updates

Decentralize
d 

Deployments

Data 
Parallelism

Task 
Parallelism

Dataflows - - X X - X - - X  X*

Actors X X  X*  X* X - - X - X
Stateful 

Serverless  X* X - X  X* X - X X X

* Supported with restrictions
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J Spenger, P Carbone, P Haller. Portals: an Extension of Dataflow Streaming 
for Stateful Serverless. 2022, preprint
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No current programming system is well-equipped for the complete job!
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The Stateful Serverless Dream

• The programmer should only need to write business logic 
• The stateful serverless system should automate everything else: 

– Reliability: exactly-once-processing guarantees 
– Scalability: scale up and down with demand 
– Execution: cloud, edge, performance, latency 
– Privacy: primitives for handling sensitive data
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Shopping Cart App

The Canonical Stateful Serverless Example: 
Shopping Cart 
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Cart

• AddToCart

• RemoveFromCart

• Checkout

Orders

Inventory

Step 1: Define the application logic

Step 2: Launch the app
Stateful Serverless System

Launched Apps: 
• Shopping Cart 
• Recommendations 
• Analytics 
• ...

Compute 
Nodes

Storage 
Nodes

Scheduler

...

Step 3: Stateful Serverless System 
Manages Execution

Automatically:

• End-to-end processing guarantees: checkpointing, recovery

• Manage running applications

• Manage multiple, decentralized deployments

• Scale up/down, dynamic reconfiguration

• Handle requests for live application updates, privacy
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Shopping Cart App

The Canonical Stateful Serverless Example: 
Shopping Cart 
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Cart Orders

Inventory

Stateful Serverless System
Launched Apps: 
• Shopping Cart 
• Recommendations 
• Analytics 
• ...

Compute 
Nodes

Storage 
Nodes

Scheduler

...

Scalable

Expected semantics:  
reliable, fault-tolerant

• AddToCart

• RemoveFromCart

• Checkout

Request/reply, 
cycles

Multiservices,  
decentralized

Dynamic  
evolution

Requirements and challenges

Privacy,  
sensitive data

Model composition,  
expressiveness
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Shopping Cart App

The Canonical Stateful Serverless Example: 
Shopping Cart 
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Cart Orders

Inventory

Stateful Serverless System
Launched Apps: 
• Shopping Cart 
• Recommendations 
• Analytics 
• ...

Compute 
Nodes

Storage 
Nodes

Scheduler

...

Scalable

Expected semantics:  
reliable, fault-tolerant

• AddToCart

• RemoveFromCart

• Checkout

Request/reply, 
cycles

Multiservices,  
decentralized

Dynamic 
evolution

Requirements and challenges

Privacy,  
sensitive data

Model composition,  
expressiveness

Requirements not supported by Dataflow Streaming
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Extending Dataflow Streaming for Stateful Serverless

The Portals programming model introduces new abstractions: 
• Atomic Streams
• “Portals”
• Workflows 
• Live consistent updates (serializable)
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• Totally ordered, distributed stream of atoms. 


• Atom: Sequence of events, transactional unit 
of computation.


• Atomic Streams enforce end-to-end exactly-once-
processing guarantees.


• The Atomic Processing Contract: "The 
consumer/producer must always consume 
and process the whole atom, before 
consuming and processing the next atom."

Atomic Streams
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Atoms

…Atomic Stream



“Portals”

Request-reply style programming with workflows, includes futures API 
• Portals enable request/reply, futures
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// Workflow A 
... 
val portal = builder.portals("portalName")  
val workflow = builder.workflows("Workflow A") 
  .source(...) 
  .replier(portal) 
    {  event => .... /* handle regular events */ } 

    {  request => // handle requests  
       ... 
       val response = ... 
       reply(response) // reply to request 
    } 
  .sink() 
  .freeze() 
...

// Workflow B 
... 
val portal = builder.registry.portals.get("portalName") 
val requester = builder.workflows(“Workflow B”) 

.source(...) 

.asker(portal) { event=> 
val request: T = ... // build request  
val future:Future[R]= portal.ask(request)  
await(future) { ... /* continue */ } 

} 
.sink("sink")  

Replier: Workflow A
Asker: Workflow B
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Shopping Cart App

The Canonical Stateful Serverless Example: 
Shopping Cart 
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Inventory

PortalEntry

Atomic Stream

PortalExit

Cart

Atomic Stream

Orders

Portals System

Launched Apps: 
• Shopping Cart 
• Recommendations 
• Analytics 
• ...

...

...

...

...

Semantically sound application logic Fully automated deployment
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When to use Portals

Applications that have/need certain combinations that are problematic. 
Common solution: resort to plumbing together different systems.
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Cycles/Iterations

Request/Reply

Dynamic Communication 
Topology

Dataflow 
Composition

Exactly-Once 
Processing

Live Consistent 
Updates

Task Parallelism
Data Parallelism

Decentralized 
Deployment

Problematic
Lack of system support
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Use Cases

• Complex event processing applications 
• ML model training and serving 
• Dynamic workflow reconfiguration 
• Sagas, distributed transactions 
• Serializable updates (e.g., for consistent execution of GDPR requests) 
• Secure workflows / privacy-preserving computing (future work) 
• …
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Outlook

• Portals programming model
– Express/simulate other distributed programming models in Portals 
– Operational semantics and soundness of Portals 
– Integration of Secure Multi-Party Computation (future) 

• Portals system
– Exploit use-cases 
– Performance optimization & evaluation 
– Release Portals 1.0: distributed, decentralized runtime 
– Sign up for launch at www.portals-project.org
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http://www.portals-project.org


Summary

• Dataflow streaming a great candidate for composing 
stateful serverless services 

• Not so great for cycles, request/reply-style 
communication, decentralized dynamic 
deployments 

• The Portals programming model extends dataflow 
streaming: 

• Atomic streams ensure processing guarantees 
over decentralized dynamic deployments 

• Portals enable request/reply-style 
communication with futures
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Key takeaways

Sign up for the launch at
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