
Extending Dataflow Streaming for
Stateful Serverless

Philipp Haller
Associate Professor

School of Electrical Engineering and Computer Science
KTH Royal Institute of Technology

Stockholm, Sweden

CASTOR Software Days 2022
September 1, 2022

KTH, Stockholm, Sweden

Philipp Haller

Philipp Haller: Background

• Associate professor at KTH (2014–2018 Assistant professor)
– PhD 2010 EPFL, Switzerland

• 2005–2014 Scala language team
– 2012–2014 Typesafe, Inc. (now Lightbend, Inc.)
– Co-author Scala language specification

• Focus on concurrent and distributed programming
– Creator of Scala Actors, co-author of Scala’s futures and Scala Async

 2

2019: ACM SIGPLAN Programming Languages Software Award for Scala
Core contributors: 
Martin Odersky, Adriaan Moors, Aleksandar Prokopec, Heather Miller, Iulian Dragos,
Nada Amin, Philipp Haller, Sebastien Doeraene, Tiark Rompf

 3

Scala Actors and Akka

https://www.lightbend.com/akka-five-year-anniversary

Scala Actors used, e.g.,
in core message queue
system of Twitter:

https://www.lightbend.com/akka-five-year-anniversary

Philipp Haller

The use of actors is common in industry

 4

Slide from:
Meiklejohn et al.

“Partisan” at
USENIX ATC ‘19

All Modern Services are Distributed

• Each of these systems is a distributed
system itself

• User data and services scattered
across multiple systems

• This is not suited for classic monolith
architectures: microservices
architecture to the rescue*

Source: Dean Wampler: Fast Data Architectures For Streaming Applications (2nd edition), O'Reilly

�5

*Till Rohrmann: Keynote: Rethinking how distributed applications are built. DEBS 2022.

Philipp Haller 6

Failures in cloud-based distributed systems can be catastrophic.

Philipp Haller

Reality of Distributed Systems

• Reliability: computers crash, messages get lost
• Scalability: workloads increase or decrease
• Cloud and edge: execution in heterogeneous environments
• Response time: services require low latency
• Privacy: systems manage sensitive, regulated data (GDPR, CCPA)

 7

We are asking too
much of distributed software

programmers!

Philipp Haller

Limitations of Distributed Programming Models

Distributed Programming Patterns Guarantees Distributed Execution

Cyclic
Dependencie

s

Dynamic
Communication

Topology

Dataflow
Composition

Typed
Communication

Request/
Reply

with Futures

Exactly-once
Processing

Serializable
Updates

Decentralize
d

Deployments

Data
Parallelism

Task
Parallelism

Dataflows - - X X - X - - X X*

Actors X X X* X* X - - X - X
Stateful

Serverless X* X - X X* X - X X X

* Supported with restrictions

 8

J Spenger, P Carbone, P Haller. Portals: an Extension of Dataflow Streaming
for Stateful Serverless. 2022, preprint

Philipp Haller

Limitations of Distributed Programming Models

Distributed Programming Patterns Guarantees Distributed Execution

Cyclic
Dependencie

s

Dynamic
Communication

Topology

Dataflow
Composition

Typed
Communication

Request/
Reply

with Futures

Exactly-once
Processing

Serializable
Updates

Decentralize
d

Deployments

Data
Parallelism

Task
Parallelism

Dataflows - - X X - X - - X X*

Actors X X X* X* X - - X - X
Stateful

Serverless X* X - X X* X - X X X

* Supported with restrictions

 9

No current programming system is well-equipped for the complete job!

Philipp Haller

The Stateful Serverless Dream

• The programmer should only need to write business logic
• The stateful serverless system should automate everything else:

– Reliability: exactly-once-processing guarantees
– Scalability: scale up and down with demand
– Execution: cloud, edge, performance, latency
– Privacy: primitives for handling sensitive data

 10

Philipp Haller

Shopping Cart App

The Canonical Stateful Serverless Example:
Shopping Cart

 11

Cart

• AddToCart

• RemoveFromCart

• Checkout

Orders

Inventory

Step 1: Define the application logic

Step 2: Launch the app
Stateful Serverless System

Launched Apps:
• Shopping Cart
• Recommendations
• Analytics
• ...

Compute
Nodes

Storage
Nodes

Scheduler

...

Step 3: Stateful Serverless System
Manages Execution

Automatically:

• End-to-end processing guarantees: checkpointing, recovery

• Manage running applications

• Manage multiple, decentralized deployments

• Scale up/down, dynamic reconfiguration

• Handle requests for live application updates, privacy

Philipp Haller

Shopping Cart App

The Canonical Stateful Serverless Example:
Shopping Cart

 12

Cart Orders

Inventory

Stateful Serverless System
Launched Apps:
• Shopping Cart
• Recommendations
• Analytics
• ...

Compute
Nodes

Storage
Nodes

Scheduler

...

Scalable

Expected semantics:
reliable, fault-tolerant

• AddToCart

• RemoveFromCart

• Checkout

Request/reply,
cycles

Multiservices,
decentralized

Dynamic
evolution

Requirements and challenges

Privacy,
sensitive data

Model composition,
expressiveness

Philipp Haller

Shopping Cart App

The Canonical Stateful Serverless Example:
Shopping Cart

 13

Cart Orders

Inventory

Stateful Serverless System
Launched Apps:
• Shopping Cart
• Recommendations
• Analytics
• ...

Compute
Nodes

Storage
Nodes

Scheduler

...

Scalable

Expected semantics:
reliable, fault-tolerant

• AddToCart

• RemoveFromCart

• Checkout

Request/reply,
cycles

Multiservices,
decentralized

Dynamic
evolution

Requirements and challenges

Privacy,
sensitive data

Model composition,
expressiveness

Requirements not supported by Dataflow Streaming

Philipp Haller

Extending Dataflow Streaming for Stateful Serverless

The Portals programming model introduces new abstractions:
• Atomic Streams
• “Portals”
• Workflows
• Live consistent updates (serializable)

 14

Philipp Haller

• Totally ordered, distributed stream of atoms.

• Atom: Sequence of events, transactional unit
of computation.

• Atomic Streams enforce end-to-end exactly-once-
processing guarantees.

• The Atomic Processing Contract: "The
consumer/producer must always consume
and process the whole atom, before
consuming and processing the next atom."

Atomic Streams

 15

Atoms

…Atomic Stream

“Portals”

Request-reply style programming with workflows, includes futures API
• Portals enable request/reply, futures

 16

// Workflow A
...
val portal = builder.portals("portalName")
val workflow = builder.workflows("Workflow A")
 .source(...)
 .replier(portal)
 { event => /* handle regular events */ }

 { request => // handle requests
 ...
 val response = ...
 reply(response) // reply to request
 }
 .sink()
 .freeze()
...

// Workflow B
...
val portal = builder.registry.portals.get("portalName")
val requester = builder.workflows(“Workflow B”)

.source(...)

.asker(portal) { event=>
val request: T = ... // build request
val future:Future[R]= portal.ask(request)
await(future) { ... /* continue */ }

}
.sink("sink")

Replier: Workflow A
Asker: Workflow B

Philipp Haller

Shopping Cart App

The Canonical Stateful Serverless Example:
Shopping Cart

 17

Inventory

PortalEntry

Atomic Stream

PortalExit

Cart

Atomic Stream

Orders

Portals System

Launched Apps:
• Shopping Cart
• Recommendations
• Analytics
• ...

...

...

...

...

Semantically sound application logic Fully automated deployment

Philipp Haller

When to use Portals

Applications that have/need certain combinations that are problematic.
Common solution: resort to plumbing together different systems.

 18

Cycles/Iterations

Request/Reply

Dynamic Communication
Topology

Dataflow
Composition

Exactly-Once
Processing

Live Consistent
Updates

Task Parallelism
Data Parallelism

Decentralized
Deployment

Problematic
Lack of system support

Philipp Haller

Use Cases

• Complex event processing applications
• ML model training and serving
• Dynamic workflow reconfiguration
• Sagas, distributed transactions
• Serializable updates (e.g., for consistent execution of GDPR requests)
• Secure workflows / privacy-preserving computing (future work)
• …

 19

Philipp Haller

Outlook

• Portals programming model
– Express/simulate other distributed programming models in Portals
– Operational semantics and soundness of Portals
– Integration of Secure Multi-Party Computation (future)

• Portals system
– Exploit use-cases
– Performance optimization & evaluation
– Release Portals 1.0: distributed, decentralized runtime
– Sign up for launch at www.portals-project.org

 20

http://www.portals-project.org

Summary

• Dataflow streaming a great candidate for composing
stateful serverless services

• Not so great for cycles, request/reply-style
communication, decentralized dynamic
deployments

• The Portals programming model extends dataflow
streaming:

• Atomic streams ensure processing guarantees
over decentralized dynamic deployments

• Portals enable request/reply-style
communication with futures

 21

Key takeaways

Sign up for the launch at

This work was partially funded by the Swedish
Foundation for Strategic Research (SSF grant

no. BD15-0006) and by Digital Futures.

Jonas Spenger
(KTH, RISE)

Paris Carbone
(KTH, RISE)

Philipp Haller
(KTH)

People

www.portals-project.org

http://www.portals-project.org

