L MoceH.E 4%

COMP4DRONES

Formal resource management
for real-time multicore applications

Kees Goossens
Andrew Nelson, Martijn Koedam,
Mojtaba Haghi, Dip Goswami, Marc Geilen, Twan Basten

7orintec TU/e wse.

Isolating Simplicity TECHNOLOGY

we're building amazing systems

Il 5G Core Network Service Base Architecture (SBA) + IMS Core

N1

29502

Control Plane

CSCF MMTel

3GP
Non-3GPP. Mandatory NF's

Optional NF's

25,000

N P

20,000

15,000

10,000

5,000

0

CASTOR software aays
2022-09-01

© Kees Goossens
Electronic Systems

Growth of software complexity in aerospace systems, thousand lines of source code (KSLOC)?

1980 1990 2000 Year
INS A300FF B757 F16D A310 A320 B777 F35
A300B F16A B767 B747 B737 A330 F22

'“When code is king: Mastering automotive software excellence,” February 17, 2021, McKinsey.com.

? Thousands of source lines of code.
Source: Paulo Soares Oliveira Filho, "The growing level of aircraft systems complexity and software investigation,” International Society of Air Safety
Investigators, 2020, isasi.org; McKinsey's SoftCoster embedded software project database

but development takes long

» The latest automotive innovations depend on software quality and integration.
30 to 50 percent [of software cost] is commonly dedicated to integration.

The automotive industry is confronting a widening and unsustainable gap between software
complexity and productivity levels.
Relative growth over time, for automotive features,' indexed, 1 = 2008

Software-development

: Software-development productivity,
complexity : tech leaders?

automotive players

6x

Left unchecked, software

complexity is expected to rise rapidly
with the introduction of new functional-
ity, only slowing once vehicle autonomy
becomes mainstream

i Productivity of tech leaders is outpacing
3 automotive players but is still not fast
enough to bridge the complexity gap

ox

Automotive-player-
1x development productivity
2008 2018 2030 has barely risen, on average

Split of SW market into SW development, integration, and validation/verification
USD billions
CAGR
2020-30
Total +9%
Integration +9%
Validation and verification +10%
4
10 Function development +10%
21
2020 2030
SOURCE: McKinsey analysis

© Kees Goossens
Electronic Systems

CASTOR software days
2022-09-01

TU/e

(embedded) systems complexity

« complexity slows development, integration, & verification

 single application
— functionality, scalable, adaptive
— real time
— cost:performance trade offs
— cross-cutting reliability, safety, longevity

* multiple applications in a single system

© Kees Goossens CASTOR software days TU /e

Electronic Systems 2022-09-01

managing multiple applications

» time sharing — operating systems
 virtualisation — hypervisors
» containerisation — runtimes

» applications are functionally isolated
» flexible deployment
— load balancing, migration, etc.

app app app app app app app app

hypervisor container runtime

app app app

© Kees Goossens CASTOR software days TU /e

Electronic Systems 2022-09-01

0Ss

I
(0]
I
(0]

hardware

perceived primary benefits of container technology

» essentially, decoupling applications

Top benefits and advantages of container technology 2020 Share of respondents
0% 5% 10% 15% 20% 25% 30% 35% 40%

Application portability/compatability across environments 38%

Easier application upgrades/maintenance/lifecycle managg¢ment

Simpler/more flexible CI/CD/ DgvO ps

Cost savings (more efficient hardware resource utilization)

Increased developer productivity and ppeed

Support for microservices architectures

Simpler/more cost-effective application testing

Improved ability to handle application dependgncies

None

Other 4%

=
26 Description: This statistic shows the primary benefits to container technology in 2020. Application portability/compatibility across environments is one of the main benefits of container technology according to 38 percent of respondentg, Read more r
Note(s): Worldwide; 2020; 551 respondents; Are involved in the purchase process for cloud computing and their organization has, or plans to have, at least one application, or a portion of their infrastructure, in the cloud. 95 percent of respondents are from the J
United States.
Source(s): IDG Research Services

© Kees Goossens CASTOR software days TU /e

Electronic Systems 2022-09-01

http://www.statista.com/statistics/1127608/benefits-of-container-technology

perceived primary benefits of container technology

 and statistical multiplexing of resources

Top benefits and advantages of container technology 2020 Share of respondents
0% 5% 10% 15% 20% 25% 30% 35% 40%

Application portability/compatability across environments 38%

Easier application upgrades/maintenance/lifecycle managg¢ment

Simpler/more flexible CI/CD/ DgvO ps

Cost savings (more efficient hardware resource utiliZzation)

Increased developer productivity and ppeed

Support for microservices architectures

Simpler/more cost-effective application testing

Improved ability to handle application dependgncies

None

Other 4%

=
26 Description: This statistic shows the primary benefits to container technology in 2020. Application portability/compatibility across environments is one of the main benefits of container technology according to 38 percent of respondentg, Read more r
Note(s): Worldwide; 2020; 551 respondents; Are involved in the purchase process for cloud computing and their organization has, or plans to have, at least one application, or a portion of their infrastructure, in the cloud. 95 percent of respondents are from the J
United States.
Source(s): IDG Research Services

© Kees Goossens CASTOR software days TU /e

Electronic Systems 2022-09-01

http://www.statista.com/statistics/1127608/benefits-of-container-technology

application performance depends on the allocated resources

apiVersion: v1

« virtualisation & containerisation work well in e.g. hyperscalers with r';:::da:d
— near-infinite resources name: frontend
spec:
— where load can be shed containers:
rf . t - name: app
o average pe ormance reqUIremen S image: images.my-company.example/app:v4
resources:
. functional correctness 23 Gl A ATIERE A re:::::; “gami”
__Cpu_rt_runtlme:9500@0 \ cpu: ||250m||
— spatial isolation ——ulimit rtprio=99 \ limits:
limited t | isolati f —-—cap-add=sys_nice \ memory: "128Mi"
— limited temporal isolation (focus on average) debian:jessie oo

app app app app app app app app
app (OK] (OF) (OF)

© Kees Goossens CASTOR software days TU /e

Electronic Systems 2022-09-01

application performance depends on the allocated resources

 virtualisation & containerisation work well in e.g. hyperscalers with
— near-infinite resources
— where load can be shed
— average performance requirements

. 2 R _
* fU n Cth na I CO rreCtn €SS Planning Architecture > Development Testin
. . . and analysis and coding 9
- Spatlal |SO|at|On Technology or tool kit <
. . . Low-code/no-code platforms
— limited tem po ral isolation Graphical user interface (GUI)-based platforms

for nondevelopers to use in building apps

Infrastructure-as-code
Configuration templates to provision infrastructure

° d yn am iS m for applications using Terraform, Ansible, etc
Microservices and APls
— upg rades Self-contained modular pieces of code that can
. . . be assembled into larger applications
— changing set of applications Al “pair programmer”

Code recommendations based on context from
- input code or natural language

Al-based testing
Automated unit and performance testing to
reduce developer time spent on testing

Automated code review
Automated software checks of source code
through Al or predefined rules

Source: McKinsey analysis

© Kees Goossens
Electronic Systems [Next-generation software development, McKinsey Technology Trends Outlook, 2022]

application performance depends on the allocated resources

» for embedded systems, however,
— resources are limited
— performance requirements are richer & stricter, e.g. (soft) real time, jitter, URLL, settling time,
— multiple applications can't all be given highest priority

» performance correctness
— spatial isolation

— temporal isolation RTOS

— energy/power isolation

« evolution during long lifetime
— adaptive applications react to user/environment
— use cases: changing set of applications
— upgrades
— while ensuring performance correctness

s app app app

© Kees Goossens CASTOR software days TU /e

Electronic Systems 2022-09-01

recap

» system design is hard and takes too long

» general-purpose computing
— virtualisation & containerisation are good
— offer only rudimentary Quality of Service
* resources: not much more than VCPUs
» application performance?

* embedded systems require strong performance guarantees with limited resources

worse performance guarantees better performance guarantees
at higher cost at lower cost
< resource provisioning >
imprecise precise
© Kees Goossens CASTOR software days TU /e

Electronic Systems 2022-09-01

case study — embedded motion control (cost:performance)

0.7 I I
- & -SMR controller with r,=mXxrg
—+—MMR controller with r.=m x r
0.6 a s ||
-a--Single-rate controller with h=r_
SSMC with SMR in transient-state
0.5 % Dual-mode scheduling u
)
(7]
L
) 0.4 [—
£
o
03 i
©
w
0.2 _
0.1 _
0 | | | | | |
1 2 3 4 5 6 7
resources (time)
© Kees Goossens CASTOR software days I '4 O C ' I-I ® ‘-

Electronic Systems 2022-09-01 Smart Mechatronic SO'LMWM

case study — embedded motion control (non-monotonic)

T T —/ 7
w -
03" |
qh_) | 6
N |1 @
2N 15 2
S .1 ©
B 2 £
c | 14 8
< | %
© h s T Tt Tttt T
St | 139
E | --» i
=z I 12
o g o e e e by ey by e e 1
0 1 2 3 4 5 6 7 8
Sensor-to-actuator-delay (ms)
worse performance guarantees better performance guarantees
at higher cost at lower cost

< resource provisioning >

imprecise precise
© Kees Goossens CASTOR software days I '4 O C . I-I ® ‘-

Electronic Systems 2022-09-01 Smart Mechatronic SO'LMWM

case study — embedded motion control (adaptivity)

Sensing Actuation L !] Y | Out|!>ut |
(S) (A) S A S A S A s ’ Fast Reference
4 A i single-rate e N 44 Wm0
Computation Computation Computation Computation ¢ o e f
y A
> L
\ T J 45
Sampling period= hs S % L
o
A A A A b Multi-rate £
% | |
Computation e o &
S A S ' Slow
4 single-rate Y, 1
Computation LI p 2 . - . i .
Y I L 1 I 1 Il
= T o’ 0T, t T./2 T2+, T Tt
Sampling period= hy= 4hs t (sec)

worse performance guarantees
at higher cost

same performance guarantees
at lower cost

resource management

imprecise precise

I MOCe "lo"

Smart Mechatronic Soizwlwws

© Kees Goossens

CASTOR software days
Electronic Systems

2022-09-01

CompSOC approach

1. a platform that offers precise resource provisioning

2. formal quality & resource model (QRM) and language (QRML) describing both platform & applications
3. compute Pareto-optimal mapping of applications on platform

4. platform offers precise resource management (deployment)

: Go

—~——

© Kees Goossens CASTOR software days TU /e
Electronic Systems 2022-09-01

CompSOC — 1 — resource provisioning

» a hardware/software platform that offers Virtual Execution Platforms (VEP) to applications

* a VEP is a virtualised subset of the platform
— extremely precise resource provisioning
+ space & time (storage, computation, communication)

— virtualisation to bare metal app app
: : : : : 1 2
 i.e. no services like those of an OS or container runtime : app app
B v
- perfect isolation of applications virtualisation kernel

— can be N/S/HRT, adaptive, ...

— no interference, information leakage, DOS, etc.

— no need to reverify after integration v

« late binding exactly same # cycles
© Kees Goossens CASTOR software days TU /e
Electronic Systems 2022-09-01

CompSOC — 2 — quality & resource model

» a hardware/software platform that offers Virtual Execution Platforms (VEP) to applications

+ use the QRM model to describe

— what.p.erformance applications offer o orovided budget
(qualities such as SNR, frame rate, settling time, ...) qualities parameters
qualitiesT T Tparameters

— given what applications require (MIPS, KB, bps, ... budgets) T T ,
— what platform resources offer (MIPS, KB, bps, ... budgets) . e

— given what platform resources cost | l
(qualities such as energy, power, weight, area, ...) required budget

© Kees Goossens CASTOR software days TU /e

Electronic Systems 2022-09-01

CompSOC — 3 — quality & resource optimisation

» a hardware/software platform that offers Virtual Execution Platforms (VEP) to applications

+ use the QRM model to describe

— what.p.erformance applications offer o orovided budget
(qualities such as SNR, frame rate, settling time, ...) qualities parameters
qualitiesT T Tparameters

— given what applications require (MIPS, KB, bps, ... budgets) T T ,
— what platform resources offer (MIPS, KB, bps, ... budgets) . e

— given what platform resources cost | fL
(qualities such as energy, power, weight, area, ...) required budget

« broker computes an optimised deployment performance ¢
— given a set of platform resources and R
— a set of applications l
— find an application:resource mapping that has a Pareto-optimal cost:performance costT 1

resource

» a VEP is the set of virtual resources allocated to an application

© Kees Goossens CASTOR software days TU /e

Electronic Systems 2022-09-01

CompSOC - 4 — quality & resource management

» a hardware/software platform that offers Virtual Execution Platforms (VEP) to applications

* a VEP is a virtualised subset of the platform
— extremely precise resource management

» cycle-accurate load, start, stop, suspend, resume, snapshot, migrate, etc.
of the VEP and the application within it

./rerun.sh: info: stop all partitions
./rerun.sh: info: (re)loading all partitions (VEPs: 13, partitions: 13/0_1 13/0_2 13/1_1 13/2_1)
./rerun.sh: reconfiguring TDM schedule at RISC-V clock cycle 0x6c@8076e656f (118781740213615 , 27656 / 124675439)

© Kees Goossens CASTOR software days TU /e

Electronic Systems 2022-09-01

advantages of virtual execution platforms ("resource-precise containers")

 isolate applications = no interference

N! combinations & S5

unbounded interleaving
inter-dependent state (25 x 25 x 28 x 28) > independent states (25 + 25 + 25 + 25)

N virtual platforms

« design, debug, verify, run, update each application independently ("composability")
» instead of a monolithic system (performance) verification when applications are ready

» within each VEP, each application can be developed using any appropriate method
— simulation-based best effort
— real time with formal model of computation
— efc.

© Kees Goossens CASTOR software days TU /e

Electronic Systems 2022-09-01

V model: integration then monolithic system verification

stakeholder < system validation

user acceptance

monolithic system (re)verification

concurrent
subsystem
stem _ Verification gyp

implementation

definition & decomposition integration then (re)verification
>
implementation time
© Kees Goossens CASTOR software days /
Electronic Systems 2022-09-01 TU e

V model: integration then monolithic system verification

stakeholder < system validation

monolithic system (re)verification

concurrent
subsystem
tem Verification gy

siihsvstem desian R
when cars have been hacked, automotive players must provide software updates to fix security issues ... and
ensure that software updates will not harm certified safety-relevant systems and are compatible with the vehicles’ configuration.
[Automotive software and electronics 2030, McKinsey, 2019]

7

USAF: "When a modification is incorporated into a system the testing performed can be categorized into two categories. The first is
the testing needed to verify and validate the modification being made. The second is to perform regression testing to ensure that the

unmodified parts of the system were not unintentionally impacted by the modification effort."
DEPARTMENT OF THE AIR FORCE, Headquarters Air Force Life Cycle Management Center (AFMC), AC-17-01 23 MAR 2017
showing compliance to a set of criteria found in MIL-HDBK-516C, Section 15, Computer Systems and Software (CS&S), which is used in the United States Air Force (USAF) airworthiness certification process.

composability in the V model: verification before integration

stakeholder < system validation

user acceptance

no system (re)verification

concurrent
application
stem _ Verification gyp

implementation

definition & decomposition verification then integration
>
implementation time
© Kees Goossens CASTOR software days /
Electronic Systems 2022-09-01 TU e

CompSOC template

non/spft real-time

1
I
i
domain :
] :
:: : part. | | part. vu. | part part. | | part. vu. | part part. | | part. vu. | part
:: : 0 1 8 0 1 8 0 1 8
I I
:: : VKERNEL VKERNEL VKERNEL
7] I
== = o B
i part.| |part||part.| .. | +
n | g 1 2 I
} :
linux : peripher| peripherals peripher|
I I
:: : [v v v
n } node node node node
i : "| MEMSHO TILEO TILE1 TILE2
" . memory ring
rest of system i I
i |
h I | /Oring ¥ v |
n : node node node
:: 1 TILEO TILE1 TILE2
7] I
7] I 0 (0 g
H . peripherals peripherals peripherals
u PYNQ/ i
Il Ultrascale processing ||| programmable
Il board system (PS) [lllogic (PL)

hard real-time domain

© Kees Goossens
Electronic Systems

CASTOR software days
2022-09-01

TU/e

CompSOC template

» configurable # tiles with » predictable - well-defined precise WCET& WCRT
- RISC-V « composable - space + time partitioned
— local scratchpad, no caches —> stateless application switching
— local peripherals (timers, etc.) « virtualised > identical # cycles with(out) virtualisation

— virtualisation kernel with cycle-accurate TDM
» configurable # memory tiles
« token rings for
— memories
— global, shared peripherals
« MMUs for space partitioning
* memory regions can be selectively shared
— within an application
— between applications
* synchronous

© Kees Goossens CASTOR software days
Electronic Systems 2022-09-01

formal resource management: budgets

» to be predictable, resource usage must be budgeted & enforced
+ best-effort applications also have budgets, but with less good service

* a budget is binary: you either get it or you don't
« when you get it, it is guaranteed until you relinquish it

» reserving a budget on a resource results in a virtual resource

» a virtual execution platform is a set of virtual resources

© Kees Goossens CASTOR software days TU /e

Electronic Systems 2022-09-01

formal resource management: components

e component

. . 'O’ob.
— set of configurations ’%%
[] (/Ol
parameter qualities ey parameters
« quality 11 T
° output input >— component —e output
* input l

R provided budget required budget

* required budget
« initial state

» configurations capture
— different modes (e.g. single video, picture in picture; sleep vs. burst mode)
— different implementations & different mappings (at different cost:performance points)

— Pareto set
© Kees Goossens CASTOR software days TU /e
Electronic Systems 2022-09-01

component composition

« components can be composed
— horizontally: 1/O
— vertically: provided — required budgets (services)
— hierarchically

» application
 virtual execution platform
» execution platform

(hierarchical)
set of components

T T T platform
1T 11T

RTOS)>—| GPU, tile, ... —e

A A
1T 1T 11T

)>— RISC-V |—e)— interconnect —e)—] —eo
/s
yo) S
'L /.Ob/}v Q(///h fL
< O' (J//.)
O(// 'O(//
© Kees Goossens CASTOR software days 'O(,f TU /e

Electronic Systems 2022-09-01

component composition

« components can be composed

— horizontally: 1/O

— vertically: provided — required budgets (services)

— hierarchically

» application
 virtual execution platform
» execution platform

© Kees Goossens
Electronic Systems

(hierarchical)
set of components

specialise the RISC-V requirg

to RTOS on RISC-V provid

CASTOR software days
2022-09-01

1T

platform

1T

RTOS

ed budget ,L
ed budget T T

)>—

RISC-V

11T

>—

GPU, tile, ..

. @

1T

A

interconnect

.)

A

11T

A

TU/e

component composition

« components can be composed
— horizontally: 1/O
— vertically: provided — required budgets (services)
— hierarchically

running a single application on a platform

T application

» application
 virtual execution platform
» execution platform

(hierarchical) task1 [—e>—{ task2
set of components

,L required budget

T T Tprovided budget platform
1T 11T
RTOS >—| GPU,tile, .. —e

A A
P 1T 11T

)>— RISC-V interconnect —e)—

© Kees Goossens CASTOR software days TU /e

Electronic Systems 2022-09-01

component composition

T application

« components can be composed
— horizontally: 1/O
— vertically: provided — required budgets (services) T required budget

— hierarchically T ! residual budget

task 1 —o)— task 2

T application

» application
 virtual execution platform

(hierarchical) task1 [—e>—{ task2
set of components

« execution platform). required budget

T T Tprovided budget platform
11T 11T
RIGS >— GPU, tile, ... —e

A A
P 1T 11T

RISC-V |—e)—{ interconnect

© Kees Goossens CASTOR software days TU /e

Electronic Systems 2022-09-01

component composition & optimisation

T application

« composition requires
task 1 —o)— task 2

1. budget matching [required budget
— output >= input T T Tresidual budget
— provided >= required 1Y

application

task 1 —o)— task 2

2. satisfying user parameter & quality constraints
— e.g. high resolution, max. 10 Watt

,L required budget

T T Tprovided budget platform
r1T 11T
RIGS >— GPU, tile, ... —e

A A
P 1T 11T

RISC-V |—e)—{ interconnect

© Kees Goossens CASTOR software days TU /e

Electronic Systems 2022-09-01

component composition & optimisation

"components":

{
"id" : "Task1",
"configurations":

quality
x

"inputs":[{"raw_frames" : "30Hz"}, ...],
"outputs":["processed_frames" : "30Hz"}, ...],
"parameters":[{"resolution" : "720p"}, ...], X X
"qualities":[{"framerate" : 30}, ...],

"required_budget”: X X

1 - { "TILE": { "RISCV":

application

"unit” ; "cycles”, >
A Sk required budget

},... // other services from RISCV

- 1, ... // other resources from TILE

}, ... // other resources besides TILE

oo cotion donfigorasene = X
2 1}, ... // other components T X X
i, oo =)
compositions": o X O t|m|se
—_ "Appl = Taskl => Task2", X . . p .
= (application X execution platform)
\/\ X
3. Pareto optimisation cost
— pick best configuration with high resolution, max. 10 Watt
— use Z3 SMT solver at design time (or in cloud @ run time) =1
or run-time embedded heuristics = X
3 X X execution
—> declarative description of the best VEP(s) = olatform
) X
5l x
4. deploy the VEP Infrastructure-as-code >
Configuration templates to provision infrastructure cost

© Kees Goossens for applications using Terraform, Ansible, etc T U/e

Electronic Systems 2022-09-01

QRML example

budget Bw integer
budget FrameRate integer
budget Computation integer
channel Video {

hres : integer ordered by

vres : integer ordered by
rate : integer ordered by

} ordered by a<=b if a.hres <= b.hres & a.vres <= b.vres & a.rate <= b.rate

budget Scaling {

segs : integer component HWscaler {
provides Scalers p_sc { streams = 4; scaling.comp = 300; scaling.segs = 32 }

comp : Computation
} ordered by element-wise }

budget Scalers {
streams : integer
scaling : Scaling

} }

component HWorSWscaler {

component SWscaler {
provides Computation p_cmp { p_cmp

(©) Bacsystem
n
i

© out : Im:

e
© imgCap
© imgAna

q
o lat : Lat

100 }

contains HWscaler hs or SWscaler ss

provides Scalers p_sc

constraint p_sc

constraint p_sc
© Kees Goossens Y

Electronic Systems }

hs.p_sc
[top, ss.p_cmp, top]

resource management framework

Operation Management Orchestration
< > < > <

% Resource/application-specific API :

register(app_bundle)
' é Orchestration API ©
Lomeago O e Y @ deploy(app_id, constraints)

Application @ stop(vep_id)
Task

Orchestrator

@ <<app_id,
constraints>>

(@) <<vep_id>>

o" ”
Runs on
@ query(app_id)

(12) configure(app_params) Broker

© stop
insert(vep_bundle
(1) application is instantiated E (8) vep is created (5) deploy(vep_id) (3 query(ep)
“Hosts” @ stop(vep_id) (@) reserve vep

Execution Platform

Resource Resource

(10), @ update

0 create(vr_id, req budg, params)
load(vr_id, init_state)

e destroy(vr_id) @e query(vep_id)
(9),@ <<remaining budget>> @ remove(vr_id)

© deallocate budget

(11) load the vep
& reset

allocate budget & set
params

© Kees Goossens CASTOR software days TU /e

Electronic Systems 2022-09-01

challenge

* we have

1. a platform that offers precise resource provisioning

2. formal quality & resource model (QRM) and language (QRML) describing both platform & applications
3. formal Pareto-optimal mapping of applications on platform

4. platform offers precise resource management (deployment)

 traditionally, we have clear separate phases

— design all applications
— map applications together on platform
— load & run

© Kees Goossens CASTOR software days TU /e

Electronic Systems 2022-09-01

