
Kees Goossens <k.g.w.goossens@tue.nl>
Electronic Systems Group
Electrical Engineering Faculty

Formal resource management
for real-time multicore applications

Kees Goossens
Andrew Nelson, Martijn Koedam,
Mojtaba Haghi, Dip Goswami, Marc Geilen, Twan Basten

© Kees Goossens
Electronic Systems

CASTOR software days
2022-09-01

3

Unified Distributed Gateway (UDG 20.2.0)
from Huawei, 30 MLOC
Linux projects, ~31 MLOC

we're building amazing systems

© Kees Goossens
Electronic Systems

CASTOR software days
2022-09-01

4
but development takes long

• The latest automotive innovations depend on software quality and integration.
30 to 50 percent [of software cost] is commonly dedicated to integration.
[The case for an end-to-end automotive-software platform, McKinsey, 2020]
[Cracking the complexity code in embedded systems development, McKinsey 2022]

© Kees Goossens
Electronic Systems

CASTOR software days
2022-09-01

5
(embedded) systems complexity

• complexity slows development, integration, & verification

• single application
– functionality, scalable, adaptive
– real time
– cost:performance trade offs
– cross-cutting reliability, safety, longevity

• multiple applications in a single system

© Kees Goossens
Electronic Systems

CASTOR software days
2022-09-01

6
managing multiple applications

• time sharing – operating systems
• virtualisation – hypervisors
• containerisation – runtimes

• applications are functionally isolated
• flexible deployment

– load balancing, migration, etc.

hardware

OS

app app app

hardware

app

hardware

OS

app app

hypervisor

OS

app app

OS

hardware

OS

app app

container runtime

libs

app app

libs

© Kees Goossens
Electronic Systems

CASTOR software days
2022-09-01

7
perceived primary benefits of container technology

• essentially, decoupling applications

Description: This statistic shows the primary benefits to container technology in 2020. Application portability/compatibility across environments is one of the main benefits of container technology according to 38 percent of respondents. Read more
Note(s): Worldwide; 2020; 551 respondents; Are involved in the purchase process for cloud computing and their organization has, or plans to have, at least one application, or a portion of their infrastructure, in the cloud. 95 percent of respondents are from the
United States.
Source(s): IDG Research Services

38%

31%

30%

30%

27%

26%

25%

24%

21%

4%

0% 5% 10% 15% 20% 25% 30% 35% 40%

Application portability/compatability across environments

Easier application upgrades/maintenance/lifecycle management

Simpler/more flexible CI/CD/ DevOps

Cost savings (more efficient hardware resource utilization)

Increased developer productivity and speed

Support for microservices architectures

Simpler/more cost-effective application testing

Improved ability to handle application dependencies

None

Other

Share of respondents

26

Top benefits and advantages of container technology 2020

http://www.statista.com/statistics/1127608/benefits-of-container-technology

© Kees Goossens
Electronic Systems

CASTOR software days
2022-09-01

8
perceived primary benefits of container technology

• and statistical multiplexing of resources

Description: This statistic shows the primary benefits to container technology in 2020. Application portability/compatibility across environments is one of the main benefits of container technology according to 38 percent of respondents. Read more
Note(s): Worldwide; 2020; 551 respondents; Are involved in the purchase process for cloud computing and their organization has, or plans to have, at least one application, or a portion of their infrastructure, in the cloud. 95 percent of respondents are from the
United States.
Source(s): IDG Research Services

38%

31%

30%

30%

27%

26%

25%

24%

21%

4%

0% 5% 10% 15% 20% 25% 30% 35% 40%

Application portability/compatability across environments

Easier application upgrades/maintenance/lifecycle management

Simpler/more flexible CI/CD/ DevOps

Cost savings (more efficient hardware resource utilization)

Increased developer productivity and speed

Support for microservices architectures

Simpler/more cost-effective application testing

Improved ability to handle application dependencies

None

Other

Share of respondents

26

Top benefits and advantages of container technology 2020

http://www.statista.com/statistics/1127608/benefits-of-container-technology

© Kees Goossens
Electronic Systems

CASTOR software days
2022-09-01

9

• virtualisation & containerisation work well in e.g. hyperscalers with
– near-infinite resources
– where load can be shed
– average performance requirements

• functional correctness
– spatial isolation
– limited temporal isolation (focus on average)

application performance depends on the allocated resources

hardware

OS

app app app

hardware

app

hardware

OS

app app

hypervisor

OS

app app

OS

hardware

OS

app app

container runtime

libs

app app

libs

© Kees Goossens
Electronic Systems

CASTOR software days
2022-09-01

11

• virtualisation & containerisation work well in e.g. hyperscalers with
– near-infinite resources
– where load can be shed
– average performance requirements

• functional correctness
– spatial isolation
– limited temporal isolation

• dynamism
– upgrades
– changing set of applications
– Ericsson life-cycle management with ML

application performance depends on the allocated resources

[Next-generation software development, McKinsey Technology Trends Outlook, 2022]

© Kees Goossens
Electronic Systems

CASTOR software days
2022-09-01

12

• for embedded systems, however,
– resources are limited
– performance requirements are richer & stricter, e.g. (soft) real time, jitter, URLL, settling time, MTTF
– multiple applications can't all be given highest priority

• performance correctness
– spatial isolation
– temporal isolation
– energy/power isolation, I/O

• evolution during long lifetime
– adaptive applications react to user/environment
– use cases: changing set of applications
– upgrades
– while ensuring performance correctness

application performance depends on the allocated resources

hardware hardware

RTOS

app app appapp

libs

© Kees Goossens
Electronic Systems

CASTOR software days
2022-09-01

13
recap

• system design is hard and takes too long

• general-purpose computing
– virtualisation & containerisation are good
– offer only rudimentary Quality of Service

• resources: not much more than VCPUs
• application performance?

• embedded systems require strong performance guarantees with limited resources

better performance guarantees
at lower cost

imprecise precise

worse performance guarantees
at higher cost

resource provisioning

© Kees Goossens
Electronic Systems

CASTOR software days
2022-09-01

14
case study – embedded motion control (cost:performance)

resources (time)

© Kees Goossens
Electronic Systems

CASTOR software days
2022-09-01

15
case study – embedded motion control (non-monotonic)

better performance guarantees
at lower cost

imprecise precise

worse performance guarantees
at higher cost

resource provisioning

© Kees Goossens
Electronic Systems

CASTOR software days
2022-09-01

16
case study – embedded motion control (adaptivity)

same performance guarantees
at lower cost

imprecise precise

worse performance guarantees
at higher cost

resource management

© Kees Goossens
Electronic Systems

CASTOR software days
2022-09-01

17
CompSOC approach

1. a platform that offers precise resource provisioning

2. formal quality & resource model (QRM) and language (QRML) describing both platform & applications
3. compute Pareto-optimal mapping of applications on platform

4. platform offers precise resource management (deployment)

• QRM & QRML are generic technologies developed in and further extended in
• CompSOC is just one platform to which it is applied

• QRM is formally defined in Interface Modeling for Quality and Resource Management,
Martijn Hendriks, Marc Geilen, Kees Goossens, Rob de Jong, Twan Basten, LMCS, 2021, 17(2)

• qrml.org

© Kees Goossens
Electronic Systems

CASTOR software days
2022-09-01

18
CompSOC – 1 – resource provisioning

• a hardware/software platform that offers Virtual Execution Platforms (VEP) to applications

• a VEP is a virtualised subset of the platform
– extremely precise resource provisioning

• space & time (storage, computation, communication)
– virtualisation to bare metal

• i.e. no services like those of an OS or container runtime

à perfect isolation of applications
– can be N/S/HRT, adaptive, ...
– no interference, information leakage, DOS, etc.
– no need to reverify after integration

• late binding

hardware

virtualisation kernel

hardware

app
1

libs

app
2

libs app
1

libs

hardware

app
2

libs

exactly same # cycles

© Kees Goossens
Electronic Systems

CASTOR software days
2022-09-01

19
CompSOC – 2 – quality & resource model

• a hardware/software platform that offers Virtual Execution Platforms (VEP) to applications

• use the QRM model to describe
– what performance applications offer

(qualities such as SNR, frame rate, settling time, ...)
– given what applications require (MIPS, KB, bps, ... budgets)
– what platform resources offer (MIPS, KB, bps, ... budgets)
– given what platform resources cost

(qualities such as energy, power, weight, area, ...)

application

provided budget

resource

required budget

parametersqualities
parametersqualities

© Kees Goossens
Electronic Systems

CASTOR software days
2022-09-01

20
CompSOC – 3 – quality & resource optimisation

• a hardware/software platform that offers Virtual Execution Platforms (VEP) to applications

• use the QRM model to describe
– what performance applications offer

(qualities such as SNR, frame rate, settling time, ...)
– given what applications require (MIPS, KB, bps, ... budgets)
– what platform resources offer (MIPS, KB, bps, ... budgets)
– given what platform resources cost

(qualities such as energy, power, weight, area, ...)

• broker computes an optimised deployment
– given a set of platform resources and
– a set of applications
– find an application:resource mapping that has a Pareto-optimal cost:performance

• a VEP is the set of virtual resources allocated to an application

application

provided budget

resource

required budget

parametersqualities
parametersqualities

application

resource

cost

performance

© Kees Goossens
Electronic Systems

CASTOR software days
2022-09-01

21
CompSOC – 4 – quality & resource management

• a hardware/software platform that offers Virtual Execution Platforms (VEP) to applications

• a VEP is a virtualised subset of the platform
– extremely precise resource management

• cycle-accurate load, start, stop, suspend, resume, snapshot, migrate, etc.
of the VEP and the application within it

© Kees Goossens
Electronic Systems

CASTOR software days
2022-09-01

22
advantages of virtual execution platforms ("resource-precise containers")

• isolate applications à no interference

• design, debug, verify, run, update each application independently ("composability")
• instead of a monolithic system (performance) verification when applications are ready

• within each VEP, each application can be developed using any appropriate method
– simulation-based best effort
– real time with formal model of computation
– etc.

è

N! combinations &
unbounded interleaving

inter-dependent state (2S x 2S x 2S x 2S)

N virtual platformsè

independent states (2S + 2S + 2S + 2S)

© Kees Goossens
Electronic Systems

CASTOR software days
2022-09-01

23
V model: integration then monolithic system verification

stake holder
needs

define system
requirements

system design

implementation

subsystem
verification

system integration

system verification

system validation

monolithic system (re)verification

user acceptance
testing

define subsystem
requirements

time

subsystem design

implementation

definition & decomposition integration then (re)verification

concurrent
subsystem
verification

© Kees Goossens
Electronic Systems

CASTOR software days
2022-09-01

24
V model: integration then monolithic system verification

stake holder
needs

define system
requirements

system design

implementation

subsystem
verification

system integration

system verification

system validation

monolithic system (re)verification

user acceptance
testing

define subsystem
requirements

time

subsystem design

implementation

definition & decomposition integration then (re)verification

concurrent
subsystem
verification

USAF: "When a modification is incorporated into a system the testing performed can be categorized into two categories. The first is
the testing needed to verify and validate the modification being made. The second is to perform regression testing to ensure that the
unmodified parts of the system were not unintentionally impacted by the modification effort."
DEPARTMENT OF THE AIR FORCE, Headquarters Air Force Life Cycle Management Center (AFMC), AC-17-01 23 MAR 2017
showing compliance to a set of criteria found in MIL-HDBK-516C, Section 15, Computer Systems and Software (CS&S), which is used in the United States Air Force (USAF) airworthiness certification process.

when cars have been hacked, automotive players must provide software updates to fix security issues ... and
ensure that software updates will not harm certified safety-relevant systems and are compatible with the vehicles’ configuration.
[Automotive software and electronics 2030, McKinsey, 2019]

© Kees Goossens
Electronic Systems

CASTOR software days
2022-09-01

25
composability in the V model: verification before integration

stake holder
needs

define system
requirements

system design

implementation

subsystem
verification

system integration

system verification

system validation

no system (re)verification

user acceptance
testing

define subsystem
requirements

time

subsystem design

implementation

definition & decomposition verification then integration

concurrent
application
verification

© Kees Goossens
Electronic Systems

CASTOR software days
2022-09-01

26
CompSOC template

ARM

linux

part.
0

part.
1

part.
2

...

processing
system (PS)

programmable
logic (PL)

internet

PYNQ /
Ultrascale

board

node
TILE0

MEMSH0

node
TILE1

node
MEMSH0

MEM2RISCV

VKERNEL

part.
0

part.
1

part.
8

peripherals

...

node
TILE2

MEM1RISCV

VKERNEL

part.
0

part.
1

part.
8

peripherals

...

MEM0RISCV

VKERNEL

part.
0

part.
1

part.
8

peripherals

...

tile 2tile 1tile 0

non/soft real-time
domain

hard real-time domain

node
TILE0

node
TILE1

node
TILE2

I/O ring

memory ring

peripherals peripherals peripherals

rest of system

© Kees Goossens
Electronic Systems

CASTOR software days
2022-09-01

27
CompSOC template

• configurable # tiles with
– RISC-V
– local scratchpad, no caches
– local peripherals (timers, etc.)
– virtualisation kernel with cycle-accurate TDM

• configurable # memory tiles
• token rings for

– memories
– global, shared peripherals

• MMUs for space partitioning
• memory regions can be selectively shared

– within an application
– between applications

• synchronous

• predictable à well-defined precise WCET& WCRT
• composable à space + time partitioned

à stateless application switching
• virtualised à identical # cycles with(out) virtualisation

CompSOC ASIC with 4 ARM tiles & NOC, 2019

© Kees Goossens
Electronic Systems

CASTOR software days
2022-09-01

29
formal resource management: budgets

• to be predictable, resource usage must be budgeted & enforced
• composable budgets must be non work conserving (think: TDM)
• best-effort applications also have budgets, but with less good service

• a budget is binary: you either get it or you don't
• when you get it, it is guaranteed until you relinquish it

• reserving a budget on a resource results in a virtual resource
• budgets & (virtual) resources are hierarchical

– platform > tile > processor > DMEM

• a virtual execution platform is a set of virtual resources

© Kees Goossens
Electronic Systems

CASTOR software days
2022-09-01

30
formal resource management: components

• component
– set of configurations

• parameter (determines the configuration)
• quality (cost, performance)
• output
• input
• provided budget
• required budget
• initial state (required to instantiate component)

• configurations capture
– different modes (e.g. single video, picture in picture; sleep vs. burst mode)
– different implementations & different mappings (at different cost:performance points)
– Pareto set

componentinput output

parameters

required budget

provided budgetqualities

© Kees Goossens
Electronic Systems

CASTOR software days
2022-09-01

31
component composition

• components can be composed
– horizontally: I/O
– vertically: provided – required budgets (services)
– hierarchically

• application
• virtual execution platform
• execution platform

RTOS

RISC-V interconnect DRAM

GPU, tile,

platform

provided output

required input

(hierarchical)
set of components

© Kees Goossens
Electronic Systems

CASTOR software days
2022-09-01

32
component composition

• components can be composed
– horizontally: I/O
– vertically: provided – required budgets (services)
– hierarchically

• application
• virtual execution platform
• execution platform

RTOS

RISC-V interconnect DRAM

GPU, tile,

platform

provided budget
required budget

(hierarchical)
set of components

specialise the RISC-V
to RTOS on RISC-V

© Kees Goossens
Electronic Systems

CASTOR software days
2022-09-01

33
component composition

• components can be composed
– horizontally: I/O
– vertically: provided – required budgets (services)
– hierarchically

• application
• virtual execution platform
• execution platform

RTOS

RISC-V interconnect DRAM

task 1 task 2

GPU, tile,

application

platform

running a single application on a platform

provided budget
required budget

(hierarchical)
set of components

© Kees Goossens
Electronic Systems

CASTOR software days
2022-09-01

34
component composition

• components can be composed
– horizontally: I/O
– vertically: provided – required budgets (services)
– hierarchically

• application
• virtual execution platform
• execution platform

RTOS

RISC-V interconnect DRAM

task 1 task 2

GPU, tile,

application

platform

task 1 task 2

application

provided budget
required budget

required budget
residual budget

(hierarchical)
set of components

© Kees Goossens
Electronic Systems

CASTOR software days
2022-09-01

35
component composition & optimisation

• composition requires

1. budget matching
– output >= input
– provided >= required

2. satisfying user parameter & quality constraints
– e.g. high resolution, max. 10 Watt

RTOS

RISC-V interconnect DRAM

task 1 task 2

GPU, tile,

application

platform

task 1 task 2

application

provided budget
required budget

required budget
residual budget

© Kees Goossens
Electronic Systems

CASTOR software days
2022-09-01

36
component composition & optimisation

• composition requires

1. budget matching
– output >= input
– provided >= required

2. satisfying user parameter & quality constraints
– e.g. high resolution, max. 10 Watt

3. Pareto optimisation
– pick best configuration with high resolution, max. 10 Watt
– use Z3 SMT solver at design time (or in cloud @ run time)

or run-time embedded heuristics
à declarative description of the best VEP(s)

4. deploy the VEP

required budget

qu
al

ity

X X

X X

X

cost
of

fe
re

d
bu

dg
et

X
X

X
X

X

application

execution
platform

qu
al

ity

X

X
X
X X X

cost

optimise
(application X execution platform)

© Kees Goossens
Electronic Systems

CASTOR software days
2022-09-01

37
QRML example

© Kees Goossens
Electronic Systems

CASTOR software days
2022-09-01

38
resource management framework

© Kees Goossens
Electronic Systems

CASTOR software days
2022-09-01

39
challenge

• we have

1. a platform that offers precise resource provisioning
2. formal quality & resource model (QRM) and language (QRML) describing both platform & applications
3. formal Pareto-optimal mapping of applications on platform
4. platform offers precise resource management (deployment)

• traditionally, we have clear separate phases
– design all applications
– map applications together on platform
– load & run
– verify performance
– repeat

