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A power-based approach to model the impact of gradient in 
bicycle traffic simulation

References
1. Pérez Castro, G., Johansson, F., Olstam, J., 2022. How to 

Model the Effect of Gradient on Bicycle Traffic in 
Microscopic Traffic Simulation. Transportation Research 
Record 2676, 609–620.

2. Martin, J.C., Milliken, D.L., Cobb, J.E., McFadden, K.L., 
Coggan, A.R., 1998. Validation of a Mathematical Model 
for Road Cycling Power. Journal of Applied Biomechanics 
14, 276–291.

• To simulate bicycle traffic, it is essential to capture how 
bicyclists react to features of the infrastructure, e.g., the 
longitudinal gradient of a bicycle path. 

• Lack of modelling support for microscopic bicycle traffic 
simulation. 

• Bicycle traffic is often modelled by applying models 
that were originally designed for car traffic.

• Car-based modelling approaches have limitations to 
simulate gradient effects on bicycle traffic (1).

• Bicycling requires human-powered motion, and the power 
output differs significantly among bicyclists due to physical 
capabilities and preferences.

We investigate the connection between gradient and power 
output in a population of bicyclists, towards developing a 
power-based modelling approach to simulate the bicycle 
traffic dynamics.
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• Location: Lund, Sweden.

• Weather: sunny with wind speeds of 5 m/s NE.

• Type of infrastructure: 140-m bicycle path segment.

• 70% is on a bridge with maximum gradient of 5.2%.

• Bidirectional traffic (separated from pedestrians/cars).

• Data: 40-min video of bicycle traffic, using a drone.

• Off-peak period in a weekday in October 2020.

• Trajectories extracted through manual and automated 
tracking tools. 

• Individual characteristics of bicyclists and bicycle cannot 
be observed in video.

• Elevation map generated on site with theodolite.  

• In this study, only data of free-riding bicyclists (i.e., 
uninfluenced by surrounding traffic) are used: 107 
bicyclists (65 riding uphill, 42 riding downhill).
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Figure 1. Aerial photograph of the observed bicycle path.

Bicycle dynamics

A mathematical model to estimate power output based on 
the conservation of energy (2).

• We estimate the relative change in power output based 
on trajectory data.

Model estimation

Simulation

Impact of gradient in bicycle traffic

• Significant change in speed due to gradient. 

• Diverse gradient impacts in bicycle traffic. 

A linear correlation between power output and gradient:

• On the uphill, bicyclists increase their power output as 
gradient increases to compensate for the loss in speed.

• On the downhill, bicyclists decrease their power output as 
gradient decreases due to braking and/or coasting.

• Variation in power output is explained by the gradient to a 
greater extent on the uphill than on the downhill.

An individual linear model (ILM) for power output adaptation 
(𝑝𝑝𝑒𝑑𝑎𝑙) as a function of gradient (γ):

Where:

• 𝑝0 : desired power output (to keep 𝑣𝑑𝑒𝑠 when 𝛾 = 0).

• 𝑝1 : desire (or ability) to compensate for 𝛾.

• Distributions of 𝑝0 and 𝑝1 are sensitive to uncertainties in 
power output estimation (e.g., weight and aerodynamics).

• Uncertainties do not significantly impact the ILM fit.

𝑝𝑝𝑒𝑑𝑎𝑙 = 𝑝0 + 𝑝1𝛾

• The impact of gradient varies greatly among bicyclists.

• Cyclists adapt to compensate for the gradient.

• Simulation captures well the gradient impacts in a 
population of bicyclists by modelling power output as a 
linear function of gradient.

• A power-based model approach seems suitable for 
simulating free-riding in bicycle traffic.

• Future research includes:

• determining the domain of applicability of the 
presented linear model,

• investigating the impact of other elements of the 
infrastructure that affect free riding, and

• investigating energy expenditure and effort as 
explanatory variables that trigger tactical behavior. 

Figure 2. Observed smoothed speed profiles.

Figure 3. Estimated power output versus gradient.

• Using ILMs, we simulate gradient effects by conservation 
of energy.

• For most bicyclists, observed and simulated speed profiles 
are similar.

• Estimation errors due to tactical behavior, and large 
oscillations in power output.

• Maximum proportional in-sample error in estimation of 
speed is less than 10% for most bicyclists.

• Proportional in-sample error in estimation of total travel 
time is less than 5% for most bicyclists.

Figure 5. Simulated speed and power output profiles for 4 
bicyclists. Bicyclists in blue illustrate accurate estimations of 
speed, and bicyclists in red illustrate poor estimations of speed. 

Figure 6. Histogram of proportional in-sample errors in estimation 
of total travel time for all bicyclists.

Figure 4. Estimated power output versus gradient for 4 bicyclists.
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