
How AI Can Extract Secrets from
Electronic Chips

Elena Dubrova, KTH

CDIS Spring Conference 2023
KTH Royal Institute of Technology

Thursday, May 25, 2023

Outline

• Background
• Side-channel analysis
• Masking countermeasure
• CRYSTALS-Kyber KEM post-quantum cryptogrphic algorithm

• Side-channel attack on a higher-order masked
CRYSTALS-Kyber implementation
• Breaking a Fifth-Order Masked Implementation of CRYSTALS-Kyber by Copy-

Paste, E. Dubrova, K. Ngo, J. Gärtner R. Wang, Real World Crypto Symposium,
March 2023, https://eprint.iacr.org/2022/1713

• Summary & future work

2

Side-channel attacks

3

photo credit: Martin Brisfors

• Algorithms are implemented in MCUs, CPUs, FPGAs, ASICs

• Different operations may consume different amount of
power/time

• The same operation executed
on different data may consume
different amount of power/time

• It may be possible to recognize
which operations and data are
processed from power/time

Masking countermeasure

4

1 1 1 1 0 0 0 0

0 1 0 1 0 1 0 1 1 0 1 0 0 1 0 1

Secret

Random mask
changed at each

execution

Secret Å Random mask
``Å´´ is bitwise XOR

First-order Boolean masking

share 1 share 2

NIST PQC PKE/KEM standardization process

5

CRYSTALS-Kyber

Selected: July 2022
Planned draft standard: 2024

Round-4 Selection

Classic McEliece
(Selected by BSI,

Germany)
HQC BIKE

SIKE
(isogeny-based,

dead)

Kyber Key Encapsuation Mechanism (KEM)

• Security is based on the hardness of learning-with-errors problem
in module lattices (M-LWE)

• PKE algorithms: 𝑝𝑘 is public key
– Key generation, (𝑝𝑘, 𝑠𝑘) = PKE.KeyGen() 𝑠𝑘 is secret (private) key
– Encryption, 𝑐 = Encrypt(𝑝𝑘,𝑚, 𝑟) 𝑟 is random coin
– Decryption, 𝑚 = Decrypt(𝑠𝑘, 𝑐) 𝑚 is message

• KEM algorithms:
– Key generation, (𝑝𝑘, 𝑠𝑘) = KEM.KeyGen()
– Encapsulation, (𝑐,	𝐾) = Encaps(𝑝𝑘) 𝐾 is shared key
– Decapsualtion, 𝐾 = Decaps(𝑐,	𝑠𝑘)

6

𝑐 is ciphertext, 𝑐 = (𝒖, 𝑣)

Fujisaki-Okamoto transform

Shared key establishment protocol

7

𝑝𝑘, 𝑠𝑘 = KEM.KeyGen() 𝑝𝑘

Party 1 Party 2

Decaps(𝑠𝑘 = ((𝐬, 𝑝𝑘,ℋ 𝑝𝑘 , 𝑧), 𝑐)
𝑚′= Decrypt(𝐬, 𝑐)

𝐾 = KDF(/𝐾!,ℋ(𝑐))

/𝐾!, 𝑟′ = 𝒢(𝑚′,ℋ(𝑝𝑘))
𝑐′ = Encrypt(𝑝𝑘,𝑚′, 𝑟′)
if 𝑐 = 𝑐′:

else
𝐾 = KDF(𝑧,ℋ(𝑐)) Assumptions :

- 𝑝𝑘, 𝑠𝑘 is static
- chosen 𝑐 can be decapsulated

𝑐 𝑐 = Encrypt(𝑝𝑘,𝑚, 𝑟)

𝑚 ← 𝒰(0,1 256)
Encaps(𝑝𝑘)

/𝐾, 𝑟 = 𝒢(𝑚,ℋ(𝑝𝑘))

𝐾 = KDF(/𝐾,ℋ(𝑐))

𝑚 = ℋ(𝑚)

8

ℳ = TrainModel(𝑇",𝑚")
𝑇" ↜ Decaps(𝑠𝑘", 𝑐")

𝑝𝑘", 𝑠𝑘" = KeyGen()
𝑚" ← 𝒰(0,1 256)
𝑐"= Encrypt(𝑝𝑘",𝑚", 𝑟")

Profiling stage

Party 1 Party 2

𝑝𝑘, 𝑠𝑘 = KeyGen()

K = Decaps(𝑠𝑘, 𝑐)
𝑇

𝑚′=ℳ 𝑇

𝑝𝑘

𝑐
𝑐

𝑝𝑘

Attack stage for
shared key recovery

(𝑐,K) = Encaps(𝑝𝑘)

𝐾 = KDF(/𝐾!,ℋ(𝑐))
/𝐾!, 𝑟′ = 𝒢(𝑚′,ℋ(𝑝𝑘))

𝐾# = Decaps(𝑠𝑘, 𝑐#)
𝑇#, 𝑇%, …

𝑚# =ℳ(𝑇#)
𝑐#, 𝑐%, …

Attack stage for
secret key recovery𝑠𝑘 = RecoverKey(𝑚#,𝑚%, …)

𝐾% = Decaps(𝑠𝑘, 𝑐%)
…

𝑚% =ℳ(𝑇%)…

Attack details

• Kyber C implementation (extended to higher orders):
• Heinz, D.,Kannwischer, M.J., Land, G., Pöppelmann, T., Schwabe,

P., Sprenkels: First-order masked Kyber on ARM Cortex-M4.
Cryptology ePrint Archive, Report 2022/058 (2022)

• Complied with optimization level -O3
• Attack point:

– Re-encryption step of decapsulation
• message encoding

• Target board:
– ARM Cortex-M4 in CW308TSTM32F4

9

photo credit: Kalle Ngo

Encryption algorithm (simplified)

10

Message encoding:
Converts an array of bytes
representing a message m
into a polynomial with
coefficients ëq/2ù × m[j],	
where m[j]	is jth bit of m

Non-masked message encoding in Kyber
implementation of Kannwischer et al.

11

Mask takes values 0x0000 or 0xFFFF
Large difference in Hamming weight Þ easy to distinguish
First described by Amiet et al. for NewHope KEM, ICPQC’2020

/* bit extraction */

Distributions of power consumption for
message bits

12

Non-overlapping distributions Þ easy to distinguish

Pr
ob

ab
ilit

y
m

as
s

Masked message encoding in Kyber
implementation on Heinz et al.

13

/* Boolean share 0 bit extraction */

/* Boolean share 1 bit extraction */

Segment of power trace of re-encryption in
Kyber implementation on Heinz et al.

14

32 bytes of share 1 32 bytes of share 2

masked_poly_frommsg()masked_poly_addnoise()

byte

More shares Þ more 32-byte blocks

15

3

4

5

6

MLP architecture for message bits recovery
from an ω-order masked implementation

Profiling strategy:
• For each ω Î{1,…,5}, we use

30K training set cut-and-joined
on 32 bytes, 30K´32 = 960K

• Message bit values are used
as labels for traces

16

ω = 1

64

32

16

How to decide where to cut?

17

(a) Power trace of a segment of masked_poly_frommsg()

(b) Weights of MLP BatchNormalization1 layer after training for m[0] bit

32 bytes of share 1
32 bytes of share 2

Copy-paste method

18

Power traces
(cut & concatenated
ith bits of shares)

G
am

m
a

pa
ra

m
et

er
share 1 share 2 share 3 share 4 share 5

A
D

C
 m

ea
su

rm
en

t
share 1 share 2 share 3 share 4 share 5 share 6

A
D

C
 m

ea
su

rm
en

t
G

am
m

a
pa

ra
m

et
er

Weights of MLP
BatchNorm.1 layer

after training

G
am

m
a

pa
ra

m
et

er

1) Copy/paste

3) Train

Weights of MLP
BatchNorm.1 layer

after trainingbefore training

2) Extend

Attack results for the first-order masking

19

Attack
type

Mean empirical probability to recover ith message bit
Avg.

0 1 2 3 4 5 6 7
Single-
trace 0.9992 0.9989 0.9953 0.9841 0.9876 0.9835 0.9393 0.9067 0.9743

With 4
rotations 0.9994 0.9991 0.9993 0.9990 0.9988 0.9885 0.9993 0.9992 0.9991

Four-trace attack results, ω-order masking
(captured with 4 negacyclic rotations)

20

ω
Mean empirical probability to recover ith message bit

Avg.
0 1 2 3 4 5 6 7

1 0.9994 0.9991 0.9993 0.9990 0.9988 0.9885 0.9993 0.9992 0.9991
2 0.9983 0.9979 0.9986 0.9980 0.9992 0.9982 0.9985 0.9976 0.9983
3 0.9978 0.9958 0.9971 0.9951 0.9971 0.9945 0.9979 0.9958 0.9964
4 0.9947 0.9775 0.9951 0.9764 0.9947 0.9763 0.9947 0.9771 0.9858
5 0.9924 0.9682 0.9918 0.9661 0.9923 0.9677 0.9937 0.9673 0.9799

ω 1 2 3 4 5
pmesage 0.7887 0.6857 0.3964 0.0259 0.0056

20-trace attack results for 5-order masking
(with 4 negacyclic rotations and 5 repetitions)

21

ω Mean empirical probability to recover ith message bit
Avg.

0 1 2 3 4 5 6 7
5 1.0000 0.9987 1.0000 0.9989 1.0000 0.9992 1.0000 0.9988 0.9995

ω 5
pmesage 0.8709

Since ranom masks are updated at each execution,
errors in repeated measurments are more
independent than in the non-masked case

Summary

22

• Some higher-order masked software implementations of
Kyber can be broken by power analysis

• Cyclic rotations are useful for the attacker

Future work

• Design stronger, DL-resistant countermeasures for software
implementations of PQC algorithms

• Analyze hardware implementations of PQC algorithms
• Ongoing analysis of the masked FPGA implementation of

Kyber by Kamucheka et al. presented at the NIST 4th PQC
Standardization Conference, Nov. 2022

• Ongoing analysis of our own protected FPGA implementation
of Kyber built on the top of Xing et al. implementation
presented at TCHES’2021

23

Thank you!

24

