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• Background
• Side-channel analysis
• Masking countermeasure
• CRYSTALS-Kyber KEM post-quantum cryptogrphic algorithm

• Side-channel attack on a higher-order masked 
CRYSTALS-Kyber implementation
• Breaking a Fifth-Order Masked Implementation of CRYSTALS-Kyber by Copy-

Paste, E. Dubrova, K. Ngo, J. Gärtner R. Wang, Real World Crypto Symposium, 
March 2023, https://eprint.iacr.org/2022/1713

• Summary & future work
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Side-channel attacks
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• Algorithms are implemented in MCUs, CPUs, FPGAs, ASICs

• Different operations may consume different amount of 
power/time

• The same operation executed                                                 
on different data may consume                                                    
different amount of power/time

• It may be possible to recognize                                          
which operations and data are                                    
processed from power/time   



Masking countermeasure
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NIST PQC PKE/KEM standardization process
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CRYSTALS-Kyber

Selected: July 2022
Planned draft standard: 2024

Round-4 Selection

Classic McEliece
(Selected by BSI, 

Germany)
HQC BIKE

SIKE 
(isogeny-based, 

dead)



Kyber Key Encapsuation Mechanism (KEM)

• Security is based on the hardness of learning-with-errors problem 
in module lattices (M-LWE)

• PKE algorithms: 𝑝𝑘 is public key
– Key generation, (𝑝𝑘, 𝑠𝑘) = PKE.KeyGen() 𝑠𝑘 is secret (private) key
– Encryption, 𝑐 = Encrypt(𝑝𝑘,𝑚, 𝑟) 𝑟 is random coin
– Decryption, 𝑚 = Decrypt(𝑠𝑘, 𝑐) 𝑚 is message

• KEM algorithms:
– Key generation, (𝑝𝑘, 𝑠𝑘) = KEM.KeyGen()
– Encapsulation, (𝑐,	𝐾) = Encaps(𝑝𝑘) 𝐾 is shared key
– Decapsualtion, 𝐾 = Decaps(𝑐,	𝑠𝑘) 
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𝑐 is ciphertext, 𝑐 = (𝒖, 𝑣)



Fujisaki-Okamoto transform

Shared key establishment protocol
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𝑝𝑘, 𝑠𝑘 = KEM.KeyGen() 𝑝𝑘

Party 1 Party 2

Decaps(𝑠𝑘 = ((𝐬, 𝑝𝑘,ℋ 𝑝𝑘 , 𝑧), 𝑐)
𝑚′= Decrypt(𝐬, 𝑐)

𝐾 = KDF( /𝐾!,ℋ(𝑐))

/𝐾!, 𝑟′ = 𝒢(𝑚′,ℋ(𝑝𝑘))
𝑐′ = Encrypt(𝑝𝑘,𝑚′, 𝑟′)
if 𝑐 = 𝑐′: 

else
𝐾 = KDF(𝑧,ℋ(𝑐)) Assumptions :

- 𝑝𝑘, 𝑠𝑘 is static
- chosen 𝑐 can be decapsulated

𝑐 𝑐 = Encrypt(𝑝𝑘,𝑚, 𝑟)

𝑚 ← 𝒰( 0,1 256)
Encaps(𝑝𝑘)

/𝐾, 𝑟 = 𝒢(𝑚,ℋ(𝑝𝑘))

𝐾 = KDF( /𝐾,ℋ(𝑐))

𝑚 = ℋ(𝑚)
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ℳ = TrainModel(𝑇",𝑚")
𝑇" ↜ Decaps(𝑠𝑘", 𝑐")

𝑝𝑘", 𝑠𝑘" = KeyGen()
𝑚" ← 𝒰( 0,1 256)
𝑐"= Encrypt(𝑝𝑘",𝑚", 𝑟")

Profiling stage

Party 1 Party 2

𝑝𝑘, 𝑠𝑘 = KeyGen()

K = Decaps(𝑠𝑘, 𝑐)
𝑇

𝑚′=ℳ 𝑇

𝑝𝑘

𝑐
𝑐

𝑝𝑘

Attack stage for 
shared key recovery

(𝑐,K	) = Encaps(𝑝𝑘)

𝐾 = KDF( /𝐾!,ℋ(𝑐))
/𝐾!, 𝑟′ = 𝒢(𝑚′,ℋ(𝑝𝑘))

𝐾# = Decaps(𝑠𝑘, 𝑐#)
𝑇#, 𝑇%, …

𝑚# =ℳ(𝑇#)
𝑐#, 𝑐%, …

Attack stage for 
secret key recovery𝑠𝑘 = RecoverKey(𝑚#,𝑚%, … )

𝐾% = Decaps(𝑠𝑘, 𝑐%)
…

𝑚% =ℳ(𝑇%)…



Attack details

• Kyber C implementation (extended to higher orders):
• Heinz, D.,Kannwischer, M.J., Land, G., Pöppelmann, T., Schwabe, 

P., Sprenkels: First-order masked Kyber on ARM Cortex-M4. 
Cryptology ePrint Archive, Report 2022/058 (2022)

• Complied with optimization level -O3
• Attack point: 

– Re-encryption step of decapsulation  
• message encoding  

• Target board:
– ARM Cortex-M4 in CW308TSTM32F4
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Encryption algorithm (simplified)
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Message encoding:
Converts an array of bytes 
representing a message m
into a polynomial with 
coefficients ëq/2ù × m[j],	
where m[j]	is jth bit of m



Non-masked message encoding in Kyber 
implementation of Kannwischer et al. 
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Mask takes values 0x0000 or 0xFFFF
Large difference in Hamming weight Þ easy to distinguish
First described by Amiet et al. for NewHope KEM, ICPQC’2020

/* bit extraction */



Distributions of power consumption for 
message bits
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Non-overlapping distributions  Þ easy to distinguish
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Masked message encoding in Kyber 
implementation on Heinz et al. 
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/* Boolean share 0 bit extraction */

/* Boolean share 1 bit extraction */



Segment of power trace of re-encryption in 
Kyber implementation on Heinz et al. 
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32 bytes of share 1 32 bytes of share 2

masked_poly_frommsg()masked_poly_addnoise()

byte



More shares Þ more 32-byte blocks
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MLP architecture for message bits recovery 
from an ω-order masked implementation

Profiling strategy:
• For each ω Î{1,…,5}, we use  

30K training set cut-and-joined 
on 32 bytes, 30K´32 = 960K

• Message bit values are used 
as labels for traces
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ω = 1

64

32

16



How to decide where to cut?
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(a) Power trace of a segment of masked_poly_frommsg()

(b) Weights of MLP BatchNormalization1 layer after training for m[0] bit

32 bytes of share 1
32 bytes of share 2



Copy-paste method
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Power traces 
(cut & concatenated 
ith bits of shares)
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Attack results for the first-order masking
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Attack 
type

Mean empirical probability to recover ith message bit
Avg.

0 1 2 3 4 5 6 7
Single-
trace 0.9992 0.9989 0.9953 0.9841 0.9876 0.9835 0.9393 0.9067 0.9743

With 4 
rotations 0.9994 0.9991 0.9993 0.9990 0.9988 0.9885 0.9993 0.9992 0.9991



Four-trace attack results, ω-order masking
(captured with 4 negacyclic rotations)
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ω
Mean empirical probability to recover ith message bit

Avg.
0 1 2 3 4 5 6 7

1 0.9994 0.9991 0.9993 0.9990 0.9988 0.9885 0.9993 0.9992 0.9991
2 0.9983 0.9979 0.9986 0.9980 0.9992 0.9982 0.9985 0.9976 0.9983
3 0.9978 0.9958 0.9971 0.9951 0.9971 0.9945 0.9979 0.9958 0.9964
4 0.9947 0.9775 0.9951 0.9764 0.9947 0.9763 0.9947 0.9771 0.9858
5 0.9924 0.9682 0.9918 0.9661 0.9923 0.9677 0.9937 0.9673 0.9799

ω 1 2 3 4 5
pmesage 0.7887 0.6857 0.3964 0.0259 0.0056



20-trace attack results for 5-order masking
(with 4 negacyclic rotations and 5 repetitions)
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ω Mean empirical probability to recover ith message bit
Avg.

0 1 2 3 4 5 6 7
5 1.0000 0.9987 1.0000 0.9989 1.0000 0.9992 1.0000 0.9988 0.9995

ω 5
pmesage 0.8709

Since ranom masks are updated at each execution,
errors in repeated measurments are more 
independent than in the non-masked case



Summary
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• Some higher-order masked software implementations of 
Kyber can be broken by power analysis

• Cyclic rotations are useful for the attacker



Future work

• Design stronger, DL-resistant countermeasures for software 
implementations of PQC algorithms

• Analyze hardware implementations of PQC algorithms
• Ongoing analysis of the masked FPGA implementation of 

Kyber by Kamucheka et al. presented at the NIST 4th PQC 
Standardization Conference, Nov. 2022

• Ongoing analysis of our own protected FPGA implementation 
of Kyber built on the top of Xing et al. implementation 
presented at TCHES’2021  
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Thank you!
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