
4/23/23

Determining an Economic Value of High Assurance
for Commodity Software Security

Virgil D. Gligor Adrian Perrig David Basin
CMU ETH

Pittsburgh Zurich

CDIS
KTH Stockholm
May 25, 2023

1

Outline

4/23/23

Why not high assurance? (~ 3 min)

Why revisit high assurance? (~ 10 min)

2

The need for selective high assurance (~ 10 min)

A Challenge (~ 2 min)

Illustrating a value of selective high assurance (~ 5 min -> …)

4/23/23 3

What is high-assurance commodity software?

High assurance
mathematical methods (e.g., formal logics, number theory, information theory)
used to prove security properties of a computer program or set of programs

e.g., beyond Common Criteria EAL7, US TCSEC A1, for the past decade

Commodity software
general purpose software available for purchase by anyone on the open market;

e.g., high volume sales & low cost; not special-purpose software for government apps.

An early example
- Trusted (aka Secure) Xenix Kernel with few property specifications and proofs in Prolog

- properties: penetration resistance (e.g., [GG91, 92])
- entry & return point protection
- parameter checking on kernel entry
- time-of-check-to-time-of-use atomicity
- inability to control execution of kernel functions
- independence of kernel programs
- . . .

4/23/23 44

Why not high assurance?

1) High opportunity cost

There will always be rapid innovation in commodity software and this will always lead to
low-assurance commodity software systems

(why rapid innovation? ~0 cost of entry in software market, ~0 regulation, 0 liability)

[Gligor SPW 2010]

3) Defenders are rational: high assurance everywhere (near perfection) is impractical

balance recovery cost(breach) x probability(breach) versus Cost(prevention);
i.e., versus Cost(high assurance)

[Lampson ACSAC 2000, CACM 2009]

2) Large commodity software systems; aka., “giants” [Lampson 2004]

There will always be “giants” whose security properties that are unknown or hard to prove

balance tilted away from high assurance

4/23/23 55

formal verification cost has decreased dramatically

2013 - $362/SLoC - seL4
2014 - $128/SLoC - Ironclad Apps
2020 - $225/SLoC - I/O separation kernel (at $300K/PY)
2020 - $40/SLoC - EverCrypt libraries ~ 1/9 of 2013 cost

=> formal verification of 50K – 70 SLoC “wimps” is practical

recovery cost(breach) has increased substantially

- cost of recovery from cybercrime ~ 1% of Global GDP

- average cost/breach = $4.24 M; if zero-trust architectures, $3.28M; if AI/ML, $2.9M

- 10% Y/Y recovery-cost increase (as of) 2021

balance is beginning to tilt towards high assurance

1. Two trends:
Why revisit high assurance?

4/23/23 6

2) Selective high assurance: select & isolate small security-critical “wimps” of a “giant”
& formally prove their security properties

Notation
b = no. of selected attacks to be countered by formal verification of ”giant’s” source code

Cb(verification) = one-time cost of verifying at most b “wimps”

Cb(recovery) = minimum recurrent annual cost of recovery from b breaches of a “giant”

Cb(recovery)⋅m⋅n = market cost for recovery by m defenders and n > 1 years

Producers & Defenders “know” the balance: Cb(verification) ≤ Cb(recovery)x1

Example: b = 3 security breaches in 42 attacks/year of US companies [VB2022]

C3(recovery) = 3⋅$2.9M = $8.7M/year (already $8.9M in 2012)
Producer’s selection:
b = 3 “wimps,” size ≤ 72.5K SLoC => C3(verification) ≤ 3⋅72.5K SLoC⋅$40/SLoC = $8.7M

How can a producer recoup Cb(verification)?

Why revisit high assurance?

.		.		.	

defender2, …, defenderm -> producer: 0

(m ≥	1,n) -> producer recoups cost Cb(verification) ≤ Cb(recovery)x1

defenderfirst -> producer: Cb(verification) in year 1; 0 in years 2, …, n

wimp 1 wimp 2 wimp b.	.	.	

giant (t >> b vulnerabilities)
commodity software

Extreme scenario 1

b
countered
attacks

.		.		.	b + 1 t
vulnerabilities

leftt

producer controlled m >> 1 => producer increases price by Cb(verification)/m = negl.(m)]

another choice: defenderfirst -> producer: 0
defenderfirst’s cost: Cb(recovery) in year 1,…, Cb(recovery) in year n

risk: low assurance fixes & limited deterrence

. . .

4/23/23 8

Extreme scenario 2

b successful attacks exploiting
t – b vulnerabilities

wimp 1 wimp 2 wimp b. . .

giant (t >> b vulnerabilities)
commodity software

b + 1 t. . .

vulnerabilities
leftt

=> smallest 𝜖 > 1/(m⋅n).

producer recoups Cb(verification) in all attacks between Extreme scenarios 1 & 2

Then, setting 𝜖 = b/(t-b) => t < b(m⋅n + 1)

-> producer recoups cost Cb(verification) ≤ Cb(recovery)x1

find smallest 𝜖: (1- 𝜖)⋅Cb(recovery)⋅m⋅n + Cb(verification) ≤ Cb(recovery)⋅m⋅n

(m ≥	1,n)

producer guesses m > m0 and increases price by Cb(verification)/m

4/23/23 9

e.g., b = 3, R = 47%⨯634, V = (1 – 46%) ⨯1.1M

=> t = 1994, n0 = 2, m0= 332 < 5.3% all companies on US stock exchanges
n0 = 7, m0 = 95

Estimation of (t, m0, n0): producer needs a very small market (m0, n0): recoup cost

b = 3, t ≥ v/s, s = 200, v ≥ 50,000

=> t ≥ 250, n0 = 2, m0 = 42
n0 = 7, m0 = 12

Example 1: V = total no. of un-remediated vulnerabilities of all defenders, all R responders

V = t ⋅ s ⋅ R/r => t = r ⋅ V / s ⋅ R & r / s ≤ 1 => t ≤ ⎡V/R⎤

Example 2. v = lower bound on no. of un-remediated vulnerabilities/defender
s = average no. of applications/defender (another survey)

Problem: surveys cannot reveal t, max no. of vulnerabilities/”giant”
s, no. of “giants”/defender
r, no. of responders/defender (typically r = 1)

m, no. of different defenders using same “giant” & n > 1

4/23/23 10

expected Cost(defender) = recovery cost(breach) x probability(breach)

The need for selective high assurance

Start with

Show that minimization of

- probability(breach) &

- recovery cost(breach)

=> selective high assurance

4/23/23 11

Minimize probability

- separate Deterrence from Assurance [Lampson2009, GW2011]

=> separate probability(breach) into two non-independent components

- Assurance -> probabilityA(breach)

- Deterrence -> probabilityD(breach)

- minimize
- probability = min(probabilityA, probabilityD) ≤ upper limit

4/23/23 12

1

0

probabilityA(breach)

high

- security functions
verification, monitoring,
recommendations, etc.

- correctness assurance
models, design,
implementation;
proofs,
security testing, etc.

- operational assurance
principles;
e.g., least privilege,
separation of duty,…

low

- increased attack cost, detection & response
audit & punishment, name & shame, etc . . .

deterrence lowhigh

10

probabilityD(breach)

Separation
breach-prevention
assurance

4/23/23

high

13

low*

lowhigh*

probabilityA(breach)

probabilityD(breach)

10

1

0

probability = min(probabilityA, probabilityD)
≤ upper limit

Separation*

deterrence

breach-prevention
assurance

mappings “~>” are monotonic (possibly not strictly)
- increase Assurance => probabilityA decreases
- increase Deterrence => probabilityD decreases

4/23/23 14

Defenders are rational [Lampson ACSAC 2000, CACM 2009]

- low assurance: probabilityA(breach) -> 1

- high deterrence: probabilityD(breach) -> 0

probabilityD = min(probabilityA, probabilityD)

However, defenders must “assume breach” [NSA 2001, VB2022]

e.g., there is no deterrence of state-sponsored attackers

=> probabilityD(breach) -> 1

Cost(defender) = recovery cost(breach) x 1=>

“In fact, real-world security depends mainly on deterrence,
and hence on the possibility of punishment.” [Lampson, CACM 2009]

4/23/23 15

Minimize recovery cost

4/23/23 16

10

1

0

probabilityA(breach)

probabilityD(breach)

recove
ry co

st

(av
g/breach

)

high
AI/ML $2.90M

mature zero trust $3.28M

avg. $4.24M

no zero trust $5.04M

minimum

Example: IBM Cost of Data Breaches (2022)

Problem: recovery cost ≠ minimum

4/23/23

high

17

low

cost
(defender)

probabilityA(breach)

probabilityD(breach)
10

1

0

insurance

recove
ry co

st

high

high

deterrence

breach-prevention
assurance

minimum

lowSolution: buy insurance

4/23/23

high

18

low

probabilityD(breach)
10

1

0

recove
ry co

st

high

high

Problem:
many (> 50%) defenders
can afford but cannot buy
insurance

no insurance

deterrence

breach-prevention
assurance

minimum

low

cost
(defender)

4/23/23 19

No alternative is left?

“assume
breach”
mindset
[NSA2021, VB2022]

- Recovery cost – high: no insurance

- Assurance – low: probabilityA(breach) -> 1

- Deterrence – low: probabilityD(breach) -> 1

4/23/23 20

- Selective High Assurance => probabilityA(breach) ≤ upper limit

- Deterrence - low: probabilityD(breach) -> 1

- recovery cost - high: no insurance

Goal
expected Cost(defender) = probabilityA(breach) x recovery cost(breach)

⋍ insurance cost(breach)

What is left is . . .

probabilityA(breach) ⋍ insurance cost(breach)/ recovery cost(breach)
≤ upper limit

4/23/23 21

low

probabilityD(breach)
10

1

0

cost
(defender)

probabilityA(breach)

-

high

high

high

upper
limit

deterrence

recove
ry co

st

breach-prevention
assurance

unava
ilable

insurance

minimum

low

low

|
upper
limit

-

4/23/23 22

low

probabilityD(breach)
10

1

0

cost
(defender)

probabilityA(breach)

-

high

high

high

upper
limit

deterrence

recove
ry co

st

breach-prevention
assurance

unava
ilable

insurance

minimum

low

low

|
upper
limit

-

Question:
how high is high?
. . . it depends on each defender

4/23/23 23

Find a defender-independent value of high assurance for commodity software systems

e.g., find a lower-bound value that depends only on the commodity software itself

A Challenge

Goal: for a selected set of breaches of a commodity software system
selective high assurance => probabilityA(breach) ≤	upper limit

Addressing the Challenge: Hypothesis of Formal Methods

Formal methods => no vulnerability => no security breach => probability(breach) = 0

How to do it?
For a set of CVEs/CWEs referring to the unverified source code,

formal methods => CVE/CWEs exploits do not exist in verified source code

=> probability(CVE/CWE exploit exists in source code) = 0

A Hypothesis Interpretation: Selective High Assurance
In general, for a set of attacks against a selected source code,

formal methods => attacks are countered in source code
=> probability(breach in selected source code) ≤	upper limit (-> 0)

4/23/23 24

Illustrating a Value of Selective High Assurance (SHA) – Steps

1. Select a software system – i.e., SCION as the first example -- with:
- formally code-level verified security properties,
- substantial size and complexity,
- internet-facing interfaces,
- known attack surfaces

2. Select from over 200K vulnerabilities of CVE/CWE databases (MITRE, NIST) those
- that are countered by the formally verified protocols and services of SCION
- others that are related to selected ones; e.g., similarities and dependencies

Determine an industry-sanctioned average cost of recovering from breaches caused by
these exploits in the ordinary Internet

The value obtained represents an average lower bound of the formal methods that
enables SCION to counter those breaches.

Define as many exploits (e.g., published and unknown attacks) as possible for the
CVEs found in Step 2. Illustrate different attacker and defender values

Q1: min/max value(SP); all SPs
Q2: min/max value(attack{X})

Q4: min cost to counter {X}
Q3: can SP1^…^SPm counter {X}?

SCION

Example

negation

adversary
terms/

features
generation

Data Base
3 relation types

- CVEs
- CWEs
- CVSS
- others

- CVE relationships
· dependencies
· activation cond.
· strategies, etc.

Knowledge Base
- NIST
- MITRE
- other; e.g.,

bugtrack

internet
incidents,

news, press
reports

natural
language

processing
e.g., ChatGPT

attack
semantics

Economic
(recovery)
value(SP)

networking research
attack papers/reports

SP
= a security

property

{CVEs} =
init_cap_set(SP)

update
init_val_set(SP)

capability_set(SP) Value-based Criteria
- costs
- incentives

queries
(term1,
term2)

mHVs + I/O,
mkernels,
OS kernels,
etc.

claimed
security

properties

.

queries

CVE relations

25

NUS (Zhenkai Liang) - ETH (A. Perrig and D. Basin) – CMU (V. Gligor)

Illustrating a Value of Selective High Assurance – Project Overview

4/23/23 26

Q	&	A

