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Abstract

As an alternative solution to global warming, this thesis explores the possibility of a
space-based geoengineering scheme that may prove worthwhile to implement in parallel to
other environmental efforts that help mitigate impact of climate change. One suggestion
of a geoengineering solution is deploying a large number of sunshades in the vicinity of
the first Lagrange point of the Sun-Earth system, and this prospective sunshade project
would serve to shield Earth from incident solar radiation. This thesis is an extension of
a feasibility study for the implementation of this large-scale mission, and has a focus on
comparing electric thrusters to solar sailing as a means of propulsion. Background on
electric propulsion systems and spaceflight mechanics is provided. The investigation was
performed by defining the spacecraft configurations, and then computing trajectories to
a point of escape from Earth and from there to the final equilibrium point.

Our results show that in order to meet the propellant demands of the electric thrusters,
the launch mass would need to increase by around 15-25 % compared to the solar sailing
implementation, equating to around 1010 kg. Nevertheless, electric propulsion could still
be a beneficial choice since it would allow shorter transfer times for each shade which
reduces the radiation exposure and subsequent degradation of the spacecraft’s systems.
It was found that the transfer time with electric propulsion would be about one-half or
one-fifth that of solar sailing, depending on spacecraft parameters. Additionally, electric
propulsion allows a much lower initial parking orbit, and while this would increase the ra-
diation exposure it would also reduce the launch costs due to the higher payload capacity
to lower altitudes. However, electric propulsion of this scale require prior advancements
in xenon or other inert propellant extraction methods and possibly a wide-scale construc-
tion of air separation plants.



Sammanfattning

Som en alternativ lösning på global uppvärmning undersöker denna uppsats möjligheten
till ett rymdbaserat geoengineering-system som kan visa sig vara värt att implementera
parallellt med andra miljöinsatser som hjälper till att mildra effekterna av klimatföränd-
ringar. Ett förslag på en geoteknisk lösning är att placera ut ett stort antal solparasoll i
närheten av den första Lagrange-punkten i sol-jord systemet, och detta blivande solpara-
sollsystem skulle syfta till att skydda jorden från infallande solstrålning. Detta examens-
arbete är en förlängning av en studie om genomförbarheten av detta storskaliga uppdrag,
och har ett fokus på att jämföra elektriska thrusters med solsegling som framdrivningsme-
del. Bakgrund om elektriska framdrivningssystem och rymdfärdsmekanik tillhandahålls.
Undersökningen utfördes genom att definiera rymdskeppskonfigurationerna och sedan
beräkna banor för en flykt från jorden och därifrån till den slutliga jämviktspunkten.

Våra resultat visar att för att möta kraven på drivmedel hos de elektriska mo-
torerna, skulle launch-massan behöva öka med cirka 15-25 % jämfört med solsegling-
implementationen, vilket motsvarar cirka 1010 kg. Ändå kan elektrisk framdrivning fort-
farande vara ett fördelaktigt val eftersom det skulle tillåta kortare transporttider för varje
parasoll, vilket minskar strålningsexponeringen och efterföljande degradering av rymdfar-
kostens system. Det visades att transporttiden med elektrisk framdrivning skulle vara un-
gefär hälften eller en femtedel av den för solsegling, beroende på rymdfarkostparametrar.
Dessutom tillåter elektrisk framdrivning en mycket lägre initial parkeringsbana, och även
om detta skulle öka strålningsexponeringen skulle det också minska launch-kostnaderna
på grund av den högre nyttolastkapaciteten till lägre höjder. Elektrisk framdrivning av
denna skala kräver emellertid föregående utveckling av metoder för utvinning av xenon
eller andra inerta drivmedel och eventuellt en storskalig konstruktion av luftseparations-
anläggningar.
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Chapter 1

Introduction

One of the greatest challenges facing our society today is global warming. The green-
house effect, magnified by emissions of gases that trap heat in the Earth’s atmosphere,
has caused the global mean temperature to rise by 1 ◦C since pre-industrial times [1].
Consequences of increasing temperatures is a subject currently undergoing rigorous study
but have already proven disastrous for both the environment and society, as links have
been found to extreme weather and droughts, loss of biodiversity, and rising sea levels
[2]. As a unifying measure and to prevent further climate changes, the Paris Agreement
was signed in 2015 by 196 parties. The agreement sets forth goals to limit the global
warming to 1.5 - 2 ◦C, and in the wake of this many countries and companies have started
instituting their own carbon neutrality goals and inventing zero-carbon solutions in order
to reach them [3].

Even so, due to the rapidly advancing rate of temperature increase it is possible that
these measures are not enough to ward off non-reversible changes to our planet. Instead,
alternative solutions are being investigated, ones that are not merely preventative and
can be implemented in parallel. Other than just focusing on reducing the emissions of
greenhouse gases, more direct action can be taken in the form of capture and removal
of already emitted carbon dioxide from the atmosphere (carbon sequestration) or artifi-
cial shielding from the amount of solar radiation that either reaches or is retained by the
Earth’s atmosphere [4]. These are examples of geoengineering, a currently mainly concep-
tual idea of large-scale alterations performed on a planet’s climate system. Space-based
geoengineering, such as the deployment of shades outside of the Earth’s atmosphere with
the aim of reducing the amount of incident solar radiation, has also been put forward as
a less invasive and more easily reversible option.

A feasibility study of the implementation of such a shade system was performed in [5]
and [6]. The study focused on how a shade system could be put into place in practice, as
well as providing estimations of the cost and the impact of such a project. In part, the
use of solar sailing as a means of propulsion for transporting the shades was investigated,
as there are many similarities between a proposed sunshade and solar sails. While the
execution of a sunshade system is still far off, the novelty of solar sailing might hinder its
progression. A more mature form of propulsion is electric propulsion, which has to date
been used in many successful spaceflight missions and is well suited for interplanetary
transfers.
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This study will therefore focus on this type of propulsion as an alternative to solar
sailing, and compare the results with those found in the original thesis. First, the liter-
ature study will provide the necessary information on electric propulsion, its types and
features, in order to make estimations of the composition of the spacecrafts. The section
regarding orbital mechanics details the equations which would govern the dynamics of a
satellite’s trajectory as it transfers from Earth to the final position. Thereafter analyt-
ical and numerical calculations determine what amount of mass and time the sunshade
project would require, and this is equated to costs and compared to the results from
when solar sailing was used.
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Chapter 2

Background Material

2.1 Sunshade project
The implementation of a large-scale sunshade outside of Earth is a project spanning
many years, and this section details the history of the project, the focus of this thesis, as
well as the results which have already been obtained by previous studies and which will
be used for comparisons.

2.1.1 What is the sunshade project?

The idea of reducing the amount of solar radiation received by Earth via a physical shield
was put forward in 1989 by the engineer James Early. His design featured a glass shield
constructed on the Moon and situated close to the first Lagrange point of the Sun-Earth
system [7]. Since then, many have contributed to the idea in the form of conceptual
suggestions and studies of practicality. Astronomer Roger Angel proposed in 2006 that
the sunshade could be comprised of an assembly of small spacecrafts, all constructed on
Earth and thereafter transported to the first Lagrange point, where they would form a
sunshade constellation [8].

Assuming a sunshade constellation similar to the one suggested by Angel, the natu-
ral ensuing question is then how large the system would need to be. The total, combined
size of the shade would depend on how much solar radiation needs to be reduced by as
well as the system’s distance from Earth. As for how much radiation shielding would be
necessary in order to meet the goals of the Paris Agreement, it has been assessed that
in order to fully mitigate a theoretical a doubling of the amount of carbon dioxide in
the atmosphere the shade system would need to block 1.7 % of solar radiation [9]. From
this, C. Fuglesang and M. G. de Herreros Miciano [5] suggested the size of the sunshade
system should be scaled to shield 1 % of incident solar radiation, and that this could
reduce the temperature increase by 1 ◦C.

2.1.2 Choice of propulsion system

Although remarkable similarities exists between solar sails and sunshades, as argued in
reference [5], the former is relatively new in space technology and would require a large
amount of prior research and testing. A more realistic approach in near future is to make
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use of existing electric propulsion engines to raise satellites’ orbit. Electric propulsion is
more suitable in a low Earth orbit, as unexpected orbital maneuvers may take place in
order to avoid possible collisions with other satellites or space debris. This is one of the
advantages of electric propulsion over the solar sail, as it allows the spacecraft to vary the
direction of the thrust without changing its magnitude. Assuming individual sunshades
are first deployed outside of Earth’s influence, solar sailing can then be used for further
travel to the final position. This requires each sunshade to be fully equipped with both
propulsion systems. Another option is to use electric propulsion all the way to the final
destination and only unfolding the sunshades once they are in place. The solar sails are
presumed to be used for station-keeping upon arrival in both cases.

2.1.3 Solar sailing in numbers

The first Lagrange point L1 in the Sun-Earth system is located at 1.5 · 106 km measured
from the Earth, equating to 0.01 astronomical units (AU). However the solar radiation
pressure (SRP) displaces this point to a so called sub-Lagrange point L′

1, and the magni-
tude of this shift depends on the spacecraft’s mass as well as the sail’s optical properties.
The equilibrium point corresponding to the minimal mass of the system was determined
in [5], [6] to be located at 2.36 · 106 km (corresponding to 0.0158 AU) from Earth, where
the total shade area needed to reduce the amount of sunlight by 1% would be 3.79·1012 m2.

The sail’s optical properties are encapsulated in the sail efficiency factor Q. There is
a relationship between the sail efficiency, the areal density ρA and lightness parameter β,
and the Q-factor thus affects both the acceleration during solar sailing but also the total
mass at the equilibrium point. For solar sailing a high Q value is preferable, and the
highest that was deemed possible was Q = 0.85. Once in place each spacecraft would ro-
tate and face the sun with a low Q value, and state-of-the-art materials currently permits
Q = 0.5 but it was proposed that future development could admit as low as Q = 0.2.
The lightness parameter used on the low Q side was β = 0.035. For the minimum mass
point these values had corresponding areal densities ρA which grants balance of the forces.
For the former, higher Q-value then this density was 21.9 g/m2 while the latter value
had 8.8 g/m2. At the same time the sail itself was estimated to have a density of 4
g/m2 while the subsystems totaled 44 kg. In order to achieve the corresponding areal
densities the area of the sail was adjusted. For Q = 0.5 then this area was 2500 m2

and the final mass (subsystems and sail) became 55 kg per sailcraft, while for Q = 0.2
the area was 9000 m2 with a mass of 81 kg. This means that in order to achieve the
total shade area then 1.5 · 109 sailcrafts would be needed for Q = 0.5 corresponding
to a grand total mass of 8.3 · 1010 kg, and 4.2 · 108 sailcrafts with a combined mass
3.4 · 1010 kg for Q = 0.2. The study assumed a future launch-to-LEO cost of 50 US
dollars per kilogram, and so the program would fetch a launch cost of 1.7−4.2 · 1012 US$.

The sailcrafts’ trajectories was divided into two parts, the escape from the Earth and
then traversal to the sub-Lagrange point. With low Q side of Q = 0.5 the first part took
531 day and the second an additional 72 days. For Q = 0.2 the respective times were
285 days plus 88 days. For both cases the high Q side had the same value at Q = 0.85.
It should be noted that it was assumed that the sail could have an optimal orientation
at all times during the transfers, an idealisation which means that the real travel time
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for the sail - especially during the escape from Earth - could be much longer.

Out of these two trajectory segments the escape from Earth was deemed the most risky
and critical, as it crosses areas with increased accumulation of space debris. This debris
poses a significant risk to the sailcraft’s integrity and its future performance, since the
large sails could easily be damaged. It was suggested to use chemical rockets to inject
the sailcrafts directly into the escape trajectory as an alternative, however this study
will investigate the possibility of using electrical propulsion for this purpose instead. In
addition, since each sailcraft is encumbered by the additional weight of the thruster and
accompanying power systems the second part of trajectory could be carried out via elec-
tric propulsion as well, in which case the sails would only need to act as shades and not
as means of propulsion.

2.2 Electric propulsion
This section aims to provide a brief overview of electrical propulsion, its key types,
features and advantages, as well as its most essential parameters. At the end of the
section the specifications of current thruster designs are presented and some examples of
missions which have successfully used electrical thrusters as the main propulsion system
are given.

2.2.1 Ideal rocket equation

The mass of a spacecraft is often referred to as dry mass and wet mass. Dry mass includes
all structural components as well as the payload mass - the mass of what the mission
aims to deliver to the designated position. Wet mass is the dry mass plus the mass of the
fuel and propellant which will be consumed during the mission. The system enclosing
a spacecraft therefore has a time-dependent mass. During a short time interval ∆t the
small mass ∆m is expelled with an exhaust velocity u relative to the spacecraft, causing
the spacecraft to gain the velocity ∆v. Observing the conservation of momentum and
assuming external forces are null then yields

(m−∆m)(v +∆v) + ∆m(v +∆v − u) = mv

=⇒ m∆v = u∆m
(2.1)

By dividing equation (2.1) with ∆t and using lim∆t→0
∆v
∆t

= v̇ and lim∆t→0
∆m
∆t

= −ṁ
since the mass is reduced, it then follows

v̇ = −u
ṁ

m
= −Ispg

ṁ

m
(2.2)

where the specific impulse Isp = u
g

(with g as Earth’s standard gravitational acceleration)
is introduced in the last step and the term ṁu = ṁIspg is the spacecraft’s thrust. The
specific impulse is assumed constant, and integration of equation (2.2) thus gives

∆v = Ispg ln

(
m0

mf

)
(2.3)

m0

mf

= e∆v/Ispg (2.4)
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[10, p.212-214]. Equation (2.3) is also know as the Tsiolkovsky rocket equation, after the
Russian rocket scientist Konstantin Tsiolkovsky who first derived it in 1903. The change
in velocity ∆v is ubiquitous in many spaceflight applications and commonly referred to
as simply ”delta-V”.

2.2.2 Types of electric propulsion thrusters and how they work

Rockets used to launch from Earth’s surface use chemical propulsion. This type of
propulsion creates thrust through the expansion of gases produced from chemical reac-
tions, which means the the expulsion velocity is limited by the energy in the chemical
bonds. The specific impulse is a measurement of how fast the propellant is ejected out
of the thruster and how efficiently the propellant is transformed into momentum. For a
chemical rocket the propellant is ejected out at lower speeds, giving a subsequent lower
specific impulse. However the thrust-to-weight ratio for this type of rocket is high and
as a result the chemical rocket is a suitable choice in order to achieve lift-off from the
surface of Earth.

Electric propulsion, often referred to as ion propulsion, uses electromagnetic fields to
accelerate ions to very high velocities which gives a high specific impulse. Consequently
this type of propulsion uses much less propellant for the same delta-V, and thus attains
a better mass ratio equation (2.4), which permits an increase in payload mass. Albeit
the velocity increase is achieved over a much longer period of time compared to chemical
propulsion. The thrust produced is also relatively small due to electrical power con-
straints, and electric propulsion is therefore better suited for use in orbit (such as for
station-keeping) or for interplanetary spaceflight.

There are three major types of electric propulsion - electrostatic, electromagnetic, elec-
trothermal [11, p.3-5]. These are grouped according to the method of acceleration:

1. For electrostatic propulsion, an electric field is applied in the same direction as the
desired acceleration, creating a Coulomb force acting on the ions. Two examples of
electrostatic thrusters are the gridded ion thruster and the Hall thruster, and these
designs can produce a specific impulse in the range of 1000 - 4000 s.

2. In electromagnetic propulsion the force is created by the use of electrical currents
and magnetic fields, the latter being responsible for the acceleration. This type
of propulsion has shown itself to be more difficult to implement, and as a result
the technological development has been limited. The Pulsed Plasma Thruster is
an electromagnetic thruster with successful missions in space, and a promising
candidate is the Magnetoplasmadynamic (MPD) thruster which has been shown to
produce an Isp up to 10 000 s [12].

3. Lastly electrothermal propulsion creates thrust by electrical heating of the propel-
lant. This causes thermal expansion and gas expulsion directed through a nozzle,
much like in chemical propulsion. Thrusters such as the Arcjet and Resistojet are
electrothermal, but since the heating of the propellant is limited consequently so
is the exhaust velocity, and the specific impulse is low compared to the other two
types - usually in the range of 500 - 700 s.
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2.2.3 Parameters of electric propulsion thrusters

The performance of the thruster hinges on the utilization efficiency of the ionziation
process. The propellant can only be accelerated and provide thrust when it has been
transformed into plasma, and more thrust is achieved when the process admits a high
ratio between the exhaust flow rate of the ionized propellant ṁi and the propellant
flow rate ṁ into the plasma generation chamber. For practical purposes the utilization
efficiency is not ideal since it is difficult to measure accurately. A quantity more easily
determined is the thrust T . Therefore the thrust efficiency η is more commonly used,
and it is defined by

η =
ṁu2

2P
=

(T 2)/ṁ

2P
(2.5)

where P is the available electrical power. The maximum value of η is 1.
A phenomenon called the power supply mass penalty becomes more noticeable with in-
creasing exhaust velocity u. This entails a decrease of thrust per unit of supplied electrical
power as the specific impulse is made higher, regardless whether the of thrust efficiency
is maximal. The effect is revealed by the thrust-to-power ratio

T

P
=

ṁu

ṁu2/2η
=

2η

u
=

2η

Ispg
(2.6)

The thrust-to-power ratio shows just why thrusters operating with electrical propulsion
and high exhaust velocities produce low thrust, and how the thrust is limited by the
available electrical power [13, p.4].

From equation (2.6) the acceleration which the thruster provides can be identified as

aT =
1

m
T =

2ηP

mIspg
(2.7)

and its corresponding propellant flow rate

ṁ =
T

Ispg
=

2ηP

I2spg
2

(2.8)

2.2.4 Power sources and solar cells

The strength of the electromagnetic fields inside the thruster is limited by the avail-
able power, which needs to be generated aboard the spacecraft itself. This can be done
through solar panels, batteries, or nuclear devices such as nuclear batteries or nuclear
reactors.

Solar panels coupled with rechargeable batteries is by far the most prevalent choice of
power generation (around 85 % of electrically driven spacecrafts use solar panels as of
2021) [14, section 3.2.1]. The reason for this is that they are readily available, produce
reasonable power, and are comparably light-weight. However they have a few critical
drawbacks, such as a high degradation rate caused by radiation and aging as well as
their diminished efficiency proportional to 1

r2
(where r is the distance to the Sun). The

latter makes solar panels a less ideal choice for missions to planets far away in the Solar
System [13, p.4].
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Nuclear devices such as an RTG (radioisotope thermoelectric generator) or on board
nuclear fission reactors are viable options which do not depend on solar power. The RTG
is a nuclear battery which utilises the heat from radioactive decay to generate electricity.
This technology exhibits high reliability and predictability in power production as well
as a long lifetime, making it a good alternative for far-reaching space probes and has
been demonstrated on for example the Cassini mission to Saturn and the New Horizons
mission to Pluto [14, section 3.3.5] .

A spacecraft in the vicinity of the Sun benefits from the use of solar panels as their
source of power generation. If electric propulsion was to be used to transfer the sun-
shades to the sub-Lagrange point then this is the most feasible alternative. In Table 2.1
there is a selection of solar panels either currently available or under development by
spacecraft manufacturers [14, section 3.2.2].

Table 2.1: A selection of solar panels developed for spacecraft power generation [14, section
3.2.2]. TRL denotes Technology Readiness Level.

Solar cells
Manufacturer Model Specific Power TRL
Airbus Defense and Space Sparkwing 165 W/kg 5-6
Exoterra Fold Out Solar Arrays 140 W/kg 5-6
MMA Design Hawk 121 W/kg 7-9
Agencia Espacial Civil Ecuatoriana DSA/1A 107 W/kg 7-9
Redwire Space ROSA 100 W/kg 5

2.2.5 Propellants

The choice of propellant not only affects the cost of the mission, but also the lifetime,
efficiency and specific impulse of the thruster. A propellant with a higher mass gives a
higher thrust efficiency and thus a better thrust-to-power ratio, as less of it needs to be
ionized to attain the same level of thrust. Similarly, less power is needed for propellants
with a low ionization potential - the energy required for ionization - but a high ionization
cross section - the probability of ionization occurring. For practical purposes the propel-
lant should be non-reactive, non-toxic and easy to store [15].

Many current designs of electric thrusters use xenon-propellant, but some alternatives
are krypton, bismuth and iodine. Despite its high cost xenon is often favored since it has
a high storage density and because of its properties as a noble gas - reactions with com-
ponent’s surfaces are mainly limited to sputtering. Krypton is somewhat less costly and
can often be used almost interchangeably with xenon while still generating a high specific
impulse. Its main disadvantages are that it has a lower storage density and yields a lower
thrust efficiency. Bismuth is cheap, gives a high thrust efficiency and thrust-to-power
ratio, and has an even higher storage density than xenon. However, since it is solid at
STP the system needs to divert power to maintain a high temperature. Iodine is highly
reactive, but works well at relatively low temperatures. It has a higher storage density
than xenon and a comparable thrust efficiency, with a cost comparable to bismuth [13,
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p.22].

2.2.6 Current electric propulsion thrusters

One reason to consider electric thrusters for the sunshade mission is the maturity as a
technology compared to solar sailing. Electric thrusters have already been used as the
primary propulsion system in numerous successful missions. The first spacecraft with an
ion engine was the Deep Space 1, which in 1998 carried out consecutive fly-bys of the
asteroid 9969 Braille and comet Borrelly [16]. Smart-1 was launched in 2003 and was
the first Moon mission by the European Space Agency, and the satellite was injected
into Geostationary-orbit via chemical rockets and subsequently used its Hall thrusters
to transfer into Moon orbit [17]. A mission currently underway is the NASA Double
Asteroid Redirection Test (DART). The aim is to test techniques to change the motion
of an asteroid preventing its impact on Earth, and the propulsion system used is the
gridded ion thruster NEXT-C. DART was launched in late 2021 and is expected to reach
its target in September 2022 [18].

The choice of thruster is explored in this study, and the benefits of low propellant
consumption from higher values of Isp as well as higher thrust is weighed against the
additional dry mass required to supply the required power. Some examples of electric
propulsion thruster designs and their specifications are detailed in Table 2.2.

Table 2.2: Electrical thrusters either currently available or under development.

Electrical propulsion systems
Name Type Isp Thrust Efficiency at Power
NSTAR [19] Ion grid ∼ 3200 s ∼ 90 mN 0.61 2.3 kW
NEXT [20] Ion grid ∼ 4090 s ∼ 237 mN 0.70 6.8 kW
T6 [21] Ion grid ∼ 4120 s ∼ 143 mN 0.64 4.5 kW
XR-5 [22] Hall ∼ 1970 s ∼ 251 mN 0.53 4.5 kW
BPT-4000 [23] Hall ∼ 2020 s ∼ 253 mN 0.57 4.5 kW
AEPS [24] Hall ∼ 2600 s ∼ 589 mN 0.57 13.5 kW
X3 [25] Hall ∼ 2340 s ∼ 5.42 N 0.63 98.4 kW
Vasimir [26] Electrothermal ∼ 5000 s ∼ 6 N 0.73 200 kW

2.3 Orbital mechanics
In this section, we aim to study orbital mechanics in order to compute the trajectory
for a spacecraft from Earth to one of the Lagrange points in the Sun-Earth system. The
models studied are the planar two body problem and the restricted three-body problem,
with the critical acceleration provided by ion engines for an orbit transfer from LEO to
escape as well as the final point on the Sun-Earth line.

2.3.1 Two-body problem

All equations presented in this section can be found in [27, p.35-37]. The two-body
problem is a special case of the n-body problem and assumes only two objects in the
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system. Other assumptions made for the two-body dynamics are:

(i) The large body is spherical and its mass is evenly distributed, which means that
its gravitational pull can be modeled as originating in its geometric center.

(ii) The small body does not influence the large body gravitationally.

Let the vectors r⃗1 and r⃗2 represent the position of the two bodies whose masses are m1

and m2 with respect to an inertial reference frame. The distance between the two bodies
is given by the radius vector r⃗ (as depicted in Figure 2.1)

r⃗ = r⃗2 − r⃗1 (2.9)

By applying the Newton’s gravitational, the second time derivative of equation (2.9) gives

¨⃗r = ¨⃗r2 − ¨⃗r1

=
F⃗2

m2

− F⃗1

m1

=
1

m2

(
Gm1m2

r3
)(−r⃗)− 1

m1

(
Gm1m2

r3
)r⃗

=
−G(m1 +m2)

r3
r⃗

= −µG

r3
r

Figure 2.1: Two-body geometry. Credit [28]

where µG = G(m1 +m2) and G is the Newtonian constant of gravitation
G = 6.674 · 10−11Nm2(Kg)−2. However in the scenario of a spacecraft orbiting around a
planet then the mass m1 is much greater than m2, and the value µG can be approximated
by µG ≈ Gm1. Furthermore, if there exists an arbitrary perturbation force F⃗ acting on
the mass m2 the equation of motion becomes

¨⃗r +
µG

r3
r⃗ =

F⃗

m2

(2.10)
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The perturbation force is in fact all the forces between the Earth and spacecraft that
might perturb the spacecraft orbit. These forces can be the thrust generated by the
spacecraft, solar radiation pressure, or gravitational influence of other planets. In order
to find the trajectory for the spacecraft equation (2.10) needs to solved numerically.

Let consider the Earth, which is assumed to be fixed, and a satellite. An Earth cen-
tered inertial coordinate system (ECI) is considered, the origin of which lies at the center
of the Earth, and so the r⃗1 is the zero vector. The basis vectors are x̂, ŷ and ẑ, where
x̂ points towards the vernal equinox, ẑ towards the north pole, and ŷ defined to form
the proper right handed coordinate system. In order to place a spacecraft into the
desired orbit the engines need to produce thrust, which is one of the perturbations of
the two-body problem. The following parameters can be introduced in a Cartesian frame:

r⃗ = (x, y) position vector

v⃗ = ˙⃗r = (ẋ, ẏ) velocity vector
(2.11)

The perturbed equation (2.10) of satellite motion in Cartesian coordinates is then

dẋ

dt
= ẍ, ẍ = −µG

r3
x+

Fx

m2

dẏ

dt
= ÿ, ÿ = −µG

r3
y +

Fy

m2

(2.12)

2.3.2 Low-thrust orbit transfer and delta-V budget

When Earth’s gravity is the dominating factor the system can be modeled as a two-body
problem. The thrust produced by ion engines is many orders of magnitude smaller than
the gravitational force, which affects how the transfer between orbits is carried out.

Starting from equation (2.10) and assuming external forces are null, the total energy
per unit of mass for a satellite in orbit around a celestial body can be derived. This is
called the specific orbital energy and is written as

Eorb =
v2

2
− µG

r
= −µG

2a
(2.13)

where v = ∥v⃗∥ is the orbital speed of the satellite relative to the body, r is the radial
distance between the satellite and the body’s center of mass, and a is the semi-major
axis of the orbit [10, p.54-60]. In particular, µG is approximately equal to the Earth’s
standard gravitational parameter and thus more or less constant. The rate of increase in
orbital energy is

Ėorb =
µG

2a2
ȧ (2.14)

and the work performed by the propulsion system has a rate of

Ėorb =
1

m
F⃗ · v⃗ (2.15)
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When the thrust is limited the rate of increase in orbital energy is maximised when the
force and velocity vectors are parallel, according to equation (2.15). This means that
minimal propellant is used when the thrust is tangential to the orbit and the trajectory
then becomes an outward spiral.

Assuming the acceleration is small and the orbit approximately circular, then the speed
of the satellite can be estimated as v2 ≈ µG

a
. Using this in equation (2.15) along with

equation (2.14) yields a separable differential equation in a and t. The solution to this
equation is

1
√
a0

− 1
√
af

=
F

m
√
µG

(t0 − tf )

Rearranging then gives

∆t =
m
√
µG

F

(
1

√
a0

− 1
√
af

)
(2.16)

tesc =
m

F

√
µG

a0
(2.17)

for the time required to transfer between an orbit with semi-major axis a0 to af , time
for escape tesc where the orbit is parabolic (af → ∞) [10, p.98-99].

Additionally, defining escape from Earth as the point when specific orbital energy goes
from negative to zero, equation (2.13) can be used to solve for the final speed as a function
of radial distance r to Earth’s center

vesc =

√
2µG

r
(2.18)

Equation (2.18) defines the escape velocity for a spacecraft. When the spacecraft has
escaped Earth and is more substantially affected by the gravitational force from the Sun,
the system is modeled as a three-body-problem.

2.3.3 The restricted three body problem

The restricted problem of three bodies describes the motion of a third body with neg-
ligible mass in a rotating coordinate system. The two revolving bodies are called the
primaries and their motion is approximated as circular Keplerian orbits around their
center of mass (barycenter). The third body is influenced by the gravitational pull of the
primaries, and we are concerned with the system composed of the two primaries Sun-
Earth and a spacecraft. The spacecraft is in a rotating frame and the two primaries are
fixed on the x-axis. It then moves in a gravitational potential field that rotates uniformly
with respect to the inertial reference frame. The dependent variables, x and y, refer to
the rotating system.

The equations of motion for the third body are derived comprehensively in [29, p.7-22],
and the essential points are summarised below.
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Figure 2.2: Notation for the dimensionless rotating system (x, y) where the larger mass 1-µ is
placed to the right of the origin. Credit [29, p.20]

For the restricted problem of three bodies, a dimensionless system of variables is used.
This means that:

(i) The distance between the primaries is unity.

(ii) The angular velocity (Ω) of the motion of M1 and M2 is assumed to be one.

(iii) The mass of the smaller primary M2 is given by the mass ratio µ = M2

M1+M2
and the

mass of primary M1 is given by (1-µ), so the total mass of the system is also one.

(iv) The position of the two primaries in non-dimensional units are then (µ, 0) and
(-1+µ, 0) for the larger and the smaller primary respectively (see Figure 2.2). The
position of the third body is denoted by (x, y).

(v) The unit of time is defined such that the period of the motion of the primaries is
2π.

(vi) The gravitational constant, G, becomes one.

The equations of motion in the x-y-plane for the third body are then

ẍ− 2ẏ =
∂U

∂x

ÿ + 2ẋ =
∂U

∂y

(2.19)

where dots denotes derivatives with respect to the dimensionless time τ , and U is the
linear sum of the gravitational and the centrifugal potential. It is also sometimes referred
to as the pseudo-potential, and given by

U(x, y) =
x2 + y2

2
+

1− µ

r1
+

µ

r2
(2.20)
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where r1 denotes the distance between the spacecraft and the first primary and likewise
r2 denotes the distance between the spacecraft and the second primary.

r1 =
√
(x− µ)2 + y2

r2 =
√

(x+ 1− µ)2 + y2
(2.21)

This system of equations has no analytical solutions. In order to find optimal trajectories
in the three-body problem when the third body is a spacecraft, optimal control must be
used to find the thrust directions and magnitudes.

2.3.4 Sun-Earth Lagrange points

Lagrange points are equilibrium points for a third body of negligible mass under the
influence of two massive orbiting bodies. At these positions in the Circular Restricted
Three Body Problem (CRTBP), the resultant gravitational force due to two large bodies
must be equal to the centripetal acceleration necessary to keep the object in orbit at that
particular distance from the larger primary, with the same angular velocity as that of
the two main bodies around their common center of mass [30, p.2]. In the Sun-Earth-
system, the center-of-mass lies inside the Sun and as a result there is a slight wobble in
the motion of the Sun in comparison to the motion of the Earth around the barycenter.
Therefore, assuming the Sun is stationary, the angular velocity of a spacecraft placed at
the liberation points coincides with the angular velocity of the Earth around the Sun.
There are five points of equilibrium between any two body system, which means that a
spacecraft located at one of these points with zero velocity and acceleration will remain
there indefinitely. The first three points, L1, L2 and L3 are unstable and hence the
slightest disturbance to any object located at one of them causes the object to drift
away. The triangular points (L4 and L5) as shown in Figure 2.3 are stable in the Sun-
Earth system. The unstable points require a small amount of delta-V for station-keeping,
in the form of regular thruster firings [31].

Figure 2.3: Illustration of the five Lagrange points between Sun-Earth-system. Credit [32]

2.3.5 Solar pressure and sub-Lagrange point

The preferred location for the sunshade configuration is a point in the vicinity of the
L1 liberation point where the gravitational forces from the Sun and Earth together with
the solar radiation pressure (SRP) balance in the CRTBP reference frame. If SRP is
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not considered, the equilibrium position corresponds to the classic L1 which is located at
1.5 ·106 km from the Earth. However, the large surface meant to shade Earth also gives
rise to a non-negligible amount of SRP directed away from the Sun. Due to the addi-
tional SRP acceleration, three-body dynamics allow for an infinite number of artificial
equilibrium points, so called sub-Lagrange points L′

1, between the Sun and the classic L1

[33, p.217-218]. There exists a minimum mass equilibrium point for the system, and this
is positioned sunwards and therefore further away from Earth compared to the classic
first-Lagrange point.

The radius Rdisk of a circular sunshade configuration at a distance ddisk from the Earth
and a solar flux ratio ∆S/S are related by

Rdisk = R⊙dDisk

d⊙
√

∆S

S
(2.22)

where R⊙ is the radius of the Sun, dDisk is the distance of the sunshades from Earth,
d⊙ is the distance of the Sun to Earth, S is the total solar flux received at the Earth
and equal to 1367 W/m2, and finally ∆S is the amount of solar flux that is to be ab-
sorbed by the sailcraft [34]. The ratio ∆S/S used in this thesis is 1 %. At the classical
Sun-Earth Lagrange L1 point, which lies at a distance of 1.5 · 106 km from Earth, a solar
disk radius Rdisk of 696 km or a structure with an equivalent area of 1.5 · 1012 m2 would
be required. However, this position is infeasible as solar radiation pressure moves the
equilibrium point towards the Sun.

The most costly feature of the sunshade project is the total mass launched from Earth,
and to minimise launch costs the mass to offset the SRP should then be minimized.
This mass tends to infinity at the classical L1 position and also increases if the sunshade
configuration is placed closer to the Sun, since more area would be required for the same
amount of ∆S. The optimal mass position is a minimum mass point located close to
2.36 · 106 km from Earth [6]. The total shade area required at this distance for the 1 %
goal is given by equation (2.22), resulting in 3.79 · 1012 m2.

As previously stated, at any equilibrium point the external acceleration of a sailcraft
due to SRP and gravitational influence of the Earth and Sun must equal the centripetal
acceleration needed to keep the sunshade in an orbit around the Sun. The acceleration
of the sunshades depends on the reflectivity and total mass of the system. Higher reflec-
tivity gives a larger SRP force and leads to a larger displacement. A larger mass on the
other hand is more affected by the gravitational forces. Consequently, a higher value of
Q corresponds to a larger total mass of the sunshade project for the same minimum mass
equilibrium point. The ideal case in the manufacturing of the sunshade project would
be to attain the lowest Q-value possible as it will result in minimum total mass of the
system.
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Chapter 3

Investigation

3.1 Problem
The study will be performed for two cases: First by using electric propulsion for a partial
trajectory only to escape the Earth’s gravitational field and assuming solar sailing can be
used for the remainder, and second by letting electric propulsion be the sole propulsion
method for the full trajectory the sub-Lagrange point. The first case can be modeled
entirely in a two-body system with an analytically derived, approximately optimal thrust
direction. The latter must be solved using optimal control and the model used will be
the Circular Restricted Three-Body Problem. This case in question was done in two
sections, using the results from the two-body problem (with additional propellant mass)
and transforming into a new coordinate system with the final values of this trajectory
used as initial values in the three-body model.

3.1.1 Optimal control problem

An optimal control problem is the task of finding the controls for a system which will
optimise a specific quantity. The system is described by the state variables x⃗ and the con-
trol variables u⃗, and the dynamics of it are enclosed in the state equations ˙⃗x(t). J(x⃗, u⃗)
is the cost or objective function, and it is the quantity which is to be optimised. The
restrictions on the variables in points along the trajectory are called the path constraints
p(t, x⃗, u⃗), and the restrictions on the state variables at the initial and final points are
called the boundary conditions b(t0, tf , x⃗0, x⃗f ).

In general the optimal control problem can be formulated as [35, p.13]:

J(x⃗, u⃗) = H(t0, tf , x⃗0, x⃗f ) +

∫ tf

t0

g(t, x⃗, u⃗) dt

˙⃗x(t) = f(t, x⃗, u⃗)

p(t, x⃗, u⃗) ≤ 0

b(t0, tf , x⃗0, x⃗f ) ≤ 0

where H, g, f are functions dependent on the problem in question, t0 denotes initial time
and tf the final time. For the specific case of this study, the state variables x⃗ are the
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position, velocity and mass of the satellite. The state equations are the differential equa-
tions derived from orbital dynamics, while the control variables u⃗ are the thrust vector’s
components. The cost function depends on the aim of the mission, and can for example
be chosen as either minimal use of propellant or minimal time required for the maneuver.

There are many ways of solving an optimal control problem, two of which are the indi-
rect method and the direct method. The indirect methods are based on the Pontryagin’s
Maximum Principle derived from calculus of variations. To find the optimal control the
problem is defined as Hamiltonian system and transformed into a boundary value prob-
lem (BVP). This resulting BVP can then be solved numerically or in some instances
analytically in order to find the optimal control law for the system. Direct methods are
based around transforming the optimal control problem into a non-linear programming
problem via discretisation, which can then be solved with optimisation algorithms [35,
p.18-24] .

This latter method was the one chosen for this project and details of implementation
are given in section 3.4.2.

3.2 Model

3.2.1 Two body problem equations in polar coordinates

As suggested in [36], the equations of motion (2.12) were represented in polar coordinates
together with (2.8), and thrust divided into its components. The system was rewritten
to first-order with the variables:

ṙ = vr

θ̇ = ω

r̈ = v̇r

θ̈ = ẇ

where r and θ are the position coordinates of the two dimensional polar coordinate
system, vr is the radial velocity and rω the tangential velocity vθ. The second order
derivatives represents the acceleration of the spacecraft. With the new variables then the
state equations are given by

˙⃗x =


ṙ

θ̇
v̇r
ω̇
ṁ

 =


vr
ω

rω2 − µG

r2
+ 1

m
Tr

−2vrω
r

+ 1
rm

Tθ
−T
Ispg

 (3.1)

Here the thrust vector in polar coordinates is T⃗ =
[
Tr, Tθ

]
and T =

∥∥∥T⃗∥∥∥. As explained in
section 2.3.2, the approximately optimal direction of this vector for minimal use of pro-
pellant is tangential. Therefore the thrust was modeled as continuous with T⃗ =

[
0, Tmax

]
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and the system could then be solved through numerical integration.

The initial condition for the state variables is the state of the spacecraft in LEO shortly
after the payload fairing of the chemical rocket has been jettisoned. The initial radius
r(t0) = r0 is the sum of Earth’s average radius and the altitude of LEO. The angular
velocity ω(t0) can be approximated from the orbital velocity due to the centripetal force
of the Earth (vo =

√
µG

r0
). The radial velocity of the spacecraft and the initial angle θ is

assumed to be zero before thrust is applied.

x⃗(t0) =


r(t0)
θ(t0)
vr(t0)
ω(t0)
m(t0)

 =


r0
0
0

ω0 =
1
r0

√
µG

r0

m0

 (3.2)

The boundary condition at the final time is the specific orbital energy equation (2.13),
which at the point of escape goes from negative to positive

Eorb =
v2r(tf ) + [r(tf )ω(tf )]

2

2
− µG

r(tf )
= 0 (3.3)

At this point the spacecraft is said to have escaped Earth and integration was stopped.

3.2.2 Characteristic Quantities and Nondimensionalisation in the
Circular Restricted Three-Body Problem

The approach in this sections follows the examples set in [37], [38]. Dynamics of the
CRTBP describe the motion of the spacecraft when it is placed in a synodic (co-rotating)
coordinate system with the origin at the barycenter of the Sun-Earth-system. This
coordinate system is illustrated in Figure 3.1, and the Sun lies on the right side of the
origin as the barycenter is located closer to the larger mass.

Figure 3.1: The synodic [x,y] coordinate system with the origin at the center-of-mass of the
Sun-Earth-system. The [X,Y] coordinate system is inertial and in this case resembles an ecliptic
coordinates system without translation of origins. Credit [39]

.

21



It follows that the location of each primary on the rotating x-axis in nondimensional units
are (µ, 0) and (µ−1, 0). Change of coordinate systems from ECI to CR3BP will result in
a z-coordinate for the spacecraft. Thus the dynamics of planar CRTBP equation (2.19)
must be extended to further incorporate the third position coordinate

ẍ = 2ẏ + x− (1− µ)(x− µ)

r31
− µ(x+ 1− µ)

r32

ÿ = −2ẋ+ y − (1− µ)y

r31
− µy

r32

z̈ =
−(1− µ)z

r31
− µz

r32

r1 =
√

(x− µ)2 + y2 + z2

r2 =
√

(x+ 1− µ)2 + y2 + z2

(3.4)

where r1 once again denotes the position of the spacecraft relative to the Sun and similarly
r2 the position of the spacecraft relative to Earth, as shown in Figure 3.1. Dynamics of
the CRTBP are described in dimensionless units and thus characteristic units must be
introduced for the Sun-Earth system specifically. The mass ratio between the Earth and
Sun is defined as

µ =
mEarth

mSun +mEarth

= 3.003481 · 10−6 (3.5)

To nondimensionalise, the characteristic quantities used for length, mass, time and thrust
in the Sun-Earth system are

ℓ∗ = 1 AU = 1.495979 · 108 km
m∗ = mSun +mEarth = 1.988481 · 1030 kg

τ ∗ =

√
(ℓ∗)3

Gm∗ = 58.13237 days

v∗ =
ℓ∗

τ ∗
= 29.785 km/s

T ∗ =
ℓ∗msatellite

(τ ∗)2

(3.6)

The characteristic time τ ∗ is chosen such that the nondimensional gravitational con-
stant G is equal to one. Escape velocities from the two-body problem can be non-
dimensionalised by dividing with v∗.

3.2.3 Coordinate systems

For the two-body problem, equations of motion were solved in the ECI system. This
ECI coordinate system lies in the Earth’s equatorial plane which does not coincide with
Earth’s orbital plane around the Sun. The orbital plane of the Earth is the ecliptic plane,
and all the bodies in our Solar System lie in or close to this plane. For Earth the axis of
rotation is tilted away by an angle known as the obliquity of the ecliptic, ε. On average,
ε is 23.45◦. The Earth’s equatorial plane and the ecliptic intersect along a line, which
is known as the vernal equinox line, at a specific time during the year. It is also known
as the March equinox since it occurs between March 19 to 21 each year. The Earth’s
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equator is then declined by 23.45◦ with respect to the Earth’s orbit plane around the
Sun, and the declination leads to a negative ε.

Figure 3.2: Illustration of the Earth’s obliquity of the ecliptic relative to its motion around the
Sun. The equatorial plane is tilted downwards with respect to the ecliptic plane by the angle ε.
Credit [40]

.

The escape spiral transfer takes place entirely in the equatorial plane with the inertial
ECI coordinate system, but the remaining trajectory will take place in the CR3BP coor-
dinate system. Thus a transformation between these two systems must take place, and
will be done in consecutive steps.

Taking into account Earth’s tilt with respect to its ecliptic plane, a first transforma-
tion of position coordinates and velocities to the ecliptic plane must be performed. Next,
a transformation from inertial Earth-centered to a rotating Earth-centered coordinate
systems takes place, which accounts for the velocity difference between inertial and ro-
tating systems. After which a simple translation of origin is needed in order to move
from Earth-centered to a synodic coordinate system.

The various coordinate system transformations can be summarised as below.

(i) Escape position coordinates can be transformed from polar coordinates to Cartesian
coordinates using Matlab pol2cart. The escape velocity in Cartesian coordinates
are given in equation (3.7) where spacecraft’s escape position and velocity in polar
coordinates are known as inputs:

vx = ṙ cos θ − rθ̇ sin θ

vy = ṙ sin θ + rθ̇ cos θ
(3.7)

(ii) A coordinate transformation from an equatorial to an ecliptic plane in the Earth-
centered non-rotating reference frame takes place. As both systems are fixed,
aligned along the vernal equinox, a simple projection from equatorial to the ecliptic
plane using a rotation-matrix is needed for both position and velocity coordinates:xecliptic

yecliptic
zecliptic

 =

1 0 0
0 cos ε − sin ε
0 sin ε cos ε


xequatorial

yequatorial
zequatorial

 (3.8)
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(iii) Another coordinate-system transformation takes place from the ecliptic system to
a rotating coordinate system with its origin in Earth’s center, known as ECEF
(Earth-centered - Earth-fixed). Position coordinates are not affected by this trans-
formation, resulting in r⃗ECEF = r⃗ecliptic. For velocity transformation the angular
velocity of Earth must be taken into account. The general formula for velocity
transformation from an inertial to a rotating coordinate system is given in equa-
tion (3.9)

v⃗rot = v⃗inertial − Ω⃗× r⃗ (3.9)

For transformation of the escape velocities between ecliptic and ECEF then equa-
tion (3.9) translates to

v⃗esc, ECEF = v⃗esc, ecliptic − Ω⃗× r⃗esc, ecliptic (3.10)

where Ω is the angular velocity of the Earth around the Sun, and therefore Ω =
2π/(365 ·24 ·60 ·60 s) ≈ 2 ·10−7 rad/s. In component form equation (3.10) becomes

vECEF, x = vecliptic, x + Ω · yesc
vECEF, y = vecliptic, y − Ω · xesc

vECEF, z = vecliptic, z

(3.11)

(iv) Now is a good time to perform nondimensionalisation of positions and velocities
before transformation to the CRTBP synodic coordinate system.

xnondim =
xecliptic

ℓ∗
, ynondim =

yecliptic
ℓ∗

, znondim =
zecliptic
ℓ∗

vx,nondim =
vx, ECEF

v∗
, vy,nondim =

vy, ECEF

v∗
, vz,nondim =

vz, ECEF

v∗

(3.12)

(v) For transformation to the synodic coordinate system with its origin in the barycen-
ter, position coordinates need only be translated in the x̂-direction. The trans-
formation between ECEF and the synodic coordinate system does not affect the
velocities given in equation (3.12). In the synodic system x̂ lies along the ver-
nal equinox which points from Earth towards the Sun. Translating origins from
Earth-centered to barycenter:

xsynodic = xnondim − (1− µ), ysynodic = ynondim, zsynodic = znondim (3.13)
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3.2.4 Optimal control problem in three-body dynamics

For minimal fuel, with state equations (2.8) and (3.4), the optimal control problem was
defined as

min J = −m(tf )

Subject to
˙⃗x = f(x⃗)

x⃗ =



x
y
z
ẋ
ẏ
ż
m


=



x1

x2

x3

x4

x5

x6

x7


, f(x⃗) =



x4

x5

x6

2x5 + x1 − (1−µ)(x1−µ)

r31
− µ(x1+1−µ)

r32
+ ux

x7

−2x4 + x2 − (1−µ)x2

r31
− µx2

r32
+ uy

x7

− (1−µ)x3

r31
− µx3

r32
+ uz

x7

−
√

u2
x+u2

y+u2
zℓ

∗

Ispg0τ∗


Path constraints on control variables ux, uy, uz

u2
x + u2

y + u2
z ≤ f 2, where f denotes maximal, nondimensional thrust magnitude

Path constraints on state variables
m ≥ mdry ∀t
Boundary constraints
x0 = Values at escape from Earth
xf = Coordinates at L′

1 and null velocities
(3.14)

In the case of minimal time the system of equations and constraints are the same with
the exception of the cost function

min J = tf

3.3 Analytical Calculations

3.3.1 Delta-V budget for ion propulsion

To determine how much propellant a spacecraft requires the maximum change in velocity,
the delta-V, can be calculated. The total delta-V for a space mission is the linear sum
of the delta-V needed to perform each propulsive maneuver needed during the mission.
Starting at the surface of the Earth, a delta-V of around 9.4 kilometers per second is
required to put a spacecraft into a low Earth orbit. A low Earth orbit (LEO) is an orbit
around Earth with an altitude between 160 kilometers and 2000 kilometers. Most of this
delta-V is lost to gravity, and roughly 1.3-1.8 km/s is lost to atmospheric drag [41]. This
will put the spacecraft into LEO with an orbital velocity of around 7-8 km/s, but the
value depends on the altitude in LEO (∼

√
1
r
). In order to further escape Earth’s gravity

well the orbital velocity must go to zero, which will also be to the total delta-V needed to
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escape Earth’s gravity. Chemical rockets are used as launching vehicles (because of their
high thrust-to-weight ratio) starting from the surface of Earth. This gets the spacecrafts
into LEO, after which the on-board low-thrust propulsion is used to attain Earth escape
velocity.

A natural inquiry for this large-scale mission is to investigate what altitude in LEO
the spacecraft should be launched into for minimal propellant costs. Objects below ap-
proximately 160 kilometers experience very rapid orbital decay and altitude loss [41]. If
the sunshade project uses solar sails instead of electric propulsion an altitude above 1000
km is necessary to avoid atmospheric drag as well as low orbiting satellites. However,
ion propulsion has demonstrated the ability to perform significant orbital maneuvers at
lower altitudes [42] and it is therefore worthwhile to study different launch altitudes.

Electric propulsion is of great interest because of its inexpensive nature compared to
conventional rockets, especially for a large scale mission design such as the sunshade
project. It may be compelling to let the spacecraft use its own propellant from a low
launch orbit, however at very low altitudes (≤ 300 km) atmospheric drag poses a signifi-
cant risk to spacecraft’s components and reduces their lifetime. Even for Earth orbiting
satellites such as in reference [42], the initial launch altitude is approximately 600 km
above the Earth’s surface and thereafter further altitude lowering orbital maneuvers are
performed.

The escape trajectories in the two-body problem for very low thrust takes form of cir-
cular orbits that are successively raised from an initial launch orbit to an escape final
orbit. The assumption that the orbits remains circular will break down as the spacecraft
approaches escape speed. However, in the derivation for delta-V it is a useful approxi-
mation. For orbit raising, semimajor axis of the orbit a must be increased. The total
energy per unit mass of the spacecraft and semimajor axis a are related by equation
(2.13). By running similar calculations as in section 2.3.2 one can establish the equation
for the time required to complete a given transfer as in equation (2.16) The total velocity
change expected of the spacecraft will be the time the engines must run multiplied by
the specific acceleration of the spacecraft, or

∆vesc =
F

m
∆t (3.15)

Substituting equation (2.16) into equation (3.15) yields an equation for delta-V required
for a given orbit transfer in terms of initial and final semimajor axes of the escape orbit,

∆vesc =

√
µG

a0
−
√

µG

af
(3.16)

As before, at escape radius the final semimajor axis af tends to infinity as the orbit
becomes parabolic. However, numerically af has a finite value and denotes radius of
Earth’s sphere of influence for the specific spacecraft. Consequently, numerical delta-V
is less than delta-V presented here. The total delta-V required from an initial launch
orbit to the escape radius (af → ∞) can be calculated as in equation (3.17) where R⊕
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denotes Earth radius and h represents initial altitude in LEO.

∆vesc =

√
µG

a0
=

√
µG

R⊕ + h
(3.17)

For calculating mass ratio between dry and propellant mass equation (2.4) is applied.
Dry mass and Isp values for the NEXT Thruster are the most suitable (see section 3.5.1).

Table 3.1: Different altitudes for initial parking orbits and respective delta-V needed to escape
for a dry mass of 240 kg.

Delta-V for different parking orbits
Altitude in LEO Delta-V mprop/m0 Propellant mass
600 km 7.559 km/s 17.2 % 49.7 kg
1400 km 7.160 km/s 16.3 % 46.8 kg
2000 km 6.898 km/s 15.8 % 44.9 kg

As expected delta-V and orbital velocity for an object at a lower altitude is higher, and
as a result more propellant is required for escape (see Table 3.1). A single sunshade
launched to a 600 km parking altitude requires approximately 5 kg more propellant for
electric propulsion than one launched to an initial altitude of 2000 km. The small in-
crease in propellant mass results in few extra days for the escape trajectory (section 3.5.2)
although this may enhance the launcher’s payload capacity. The maximum payload for
a launch vehicle is usually defined for an altitude of 500 km in LEO and it decreases for
higher parking orbits. As a result, low parking orbits allow for fewer launches for the
total payload, reducing launch costs considerably. However, higher parking orbits reduce
the risk of collisions with near Earth satellite constellations as well as enabling less time
spent in the Van Allen radiation belts.

If the spacecraft is to use electric propulsion as the sole source of propulsion, another
thrust arc is required after escape in order for the spacecraft to reach the L′

1 of the Sun-
Earth system. Analytically there is no suitable equation for calculating delta-V required
for this maneuver. The trajectory computation for such a transfer is most frequently
done using optimal control in three-body dynamics.

3.4 Numerical Analysis

3.4.1 Two-body problem

The dynamics in equation (3.1) of the planar two body problem were propagated using
numerical integration until the final condition equation (3.3) was met. The algorithm
used was the explicit Runge-Kutta of order 4 (RK4) with a stepsize of h = 0.1.
Initial conditions equation (3.2) were set with r0 = 8.371 · 106 (using an altitude of 600-
2000 km in LEO), µG = 3.986 ·1014, and m0 varied depending on thruster and its specific
impulse.
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3.4.2 Three-body problem

To use a direct method the optimal control problem must be discretised and transformed
into a non-linear programming problem. This was done in Matlab and solved with the
function fmincon [43] included in the Optimization Toolbox. Specifically the method
used was direct single shooting.

The control was parametrised as piece-wise constant with u1, u2, . . . , u3N+1 over time
intervals T = [t0, t1, ..., tN ]. An NLP state vector was introduced as
p =

[
fx1, fy1, fz1, . . . , fxN , fyN , fzN , dt

]
which then contains all optimisation variables.

Here fij is a nondimensional thrust component at step j, and dt is the size of the nondi-
mensional time step. The dynamics were discretised by propagating the state with numer-
ical integration of equations (3.14) by use of ODE45 creating a state matrix dependent
on the optimisation variables. From this the non-linear constraints could then be defined.

The equality constraints ceq = 0 were that the final position coordinates must coin-
cide with the sub-Lagrange point

[
xN − xfinal, yN , zN

]
and final velocities must be small[

vx,N − vtol, vy,N − vtol, vz,N − vtol

]
.

For inequality constraints c ≤ 0 then maximal thrust was defined for all time intervals
f 2
i − f 2

max (f⃗i =
[
fx, fy, fz

]
, i = 1, . . . , N) and since the mass was continually decreasing

then a mass constraint was only imposed at the final point mdry −mf .

Two different cost functions were used, minimal time and minimal fuel. With every
time step at the same size the total elapsed time is N · dt, thus the minimal time cost
function was defined as cost = dt. Minimal use of fuel is equivalent to maximal final
mass and the cost function in this case was cost = −mf (which is to be minimised).

In the implementation the number of intervals in which the control is constant was
chosen as N = 20, and for each of these intervals the dynamics were propagated for
Nsim = 100 number of steps. The tolerance for final velocity was set to vtol = 10−4 = 3
m/s as was done in [6].

3.5 Results

3.5.1 Choice of ion thruster

Electric thrusters with a higher specific impulse require less propellant to execute ma-
neuvers, which reduces cost both directly from the propellant and indirectly by less mass
needing to be launched to low-Earth orbit. However these thrusters often consume more
power and the spacecraft must then be equipped with more solar panels, which instead
increases the launch mass. Therefore it was decided to run simulations comparing dif-
ferent thrusters to see how much the parameters would change the amount of mass and
propellant required for an escape trajectory.

From Table 2.1, the solar panels were assumed to have a power output of 165 W/kg
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and the mass contribution from this to achieve the required amount of power for each
thruster was calculated. In order to cover the times when solar power is not available,
such as when the spacecraft is in eclipse, batteries with an equivalent specific power [44]
of the solar panels are also equipped. The payload mass was for now be set to 100 kg
and includes systems such as computer, sensors and trackers since the sunshade satellites
will need these once in place for station-keeping. The dry mass used in the simulations is
then comprised of payload mass, thruster and IP-specific subsystems, and the solar cells
with batteries. These values can be found in Table 3.2.

Table 3.2: Mass distribution and total dry mass for different thrusters types. Thruster weight
includes the mass of required subsystems. These values are approximations.

Dry mass for different thrusters
Thruster Weight Power Power system weight Dry mass
NEXT 58 kg [45] 6.8 kW 82 kg 240 kg
BPT-4000 32 kg1[46] 4.5 kW 55 kg 187 kg
AEPS 99 kg [47] 13.5 kW 164 kg 363 kg

The resulting trajectories are displayed in Figure 3.3 and values in Table 3.3.
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Figure 3.3: Plots of escape from Earth from a low Earth orbit, with an initial altitude of 2000
km, for different thrusters.

Table 3.3: Simulation results for launch from LEO to escape with respective dry mass and specific
impulse.

Simulation for different thrusters
Thruster Isp Initial mass Propellant mass mprop/m0 tescape
NEXT ∼ 4090 s 280.9 kg 40.12 kg 14.3 % 80.14 days
BPT-4000 ∼ 2020 s 257.2 kg 68.51 kg 26.6 % 63.31 days
AEPS ∼ 2600 s 463.6 kg 98.73 kg 21.3 % 50.44 days

In order to weigh the results of thruster performance against power demands an estimated
cost could be beneficial. Different kinds of propellants were discussed in section 2.2.5 and

1Exact weights for subsystems other than PPU could not be found, instead similar values were
assumed as in [45]
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all the selected thrusters run on Xenon, the cost of which was assumed to be 1800 $US/kg.
The same Launch-to-LEO cost as in reference [5] was used, this being a low prospective
estimate of 50 $US/kg.

Table 3.4: Distribution of cost for escape trajectories with a payload of 100 kg.

Estimated cost
Thruster Propellant mass Propellant cost Launch mass Launch-to-LEO cost Total cost
NEXT 40.12 kg 72 216 $US 280.9 kg 14 045 $US 86 261 $US
BPT-4000 68.51 kg 123 318 $US 257.2 kg 12 860 $US 136 178 $US
AEPS 98.73 kg 177 714 $US 462.7 kg 23 135 $US 200 849 $US

The lowest total cost option as seen in Table 3.4 is then the NEXT thruster, exhibiting
a balance between low structural mass and efficient use of propellant. However it was
the trajectory which took the longest amount of time, at around 80 days compared to
63 and 50 days for the BPT-4000 and AEPS respectively. This is most likely due to a
combination of its lower maximal thrust magnitude coupled with its moderate dry mass
as compared to the other two thruster, outweighing the higher specific impulse. Since
the mission of placing the sunshade system is not time critical this was not regarded as
a significant issue.

3.5.2 Escape time for different initial parking orbits

The numerical results for different launch parking orbits are presented in Table 3.5. For
all altitudes thrust and Isp value provided by the NEXT Thruster is used (see Table 2.2).

Table 3.5: Numerical results for propellant mass using Tmax = 237 mN.

Different altitude for initial parking orbits using NEXT thruster
Altitude in LEO Analytical initial mass Propellant mass mprop/m0 tescape
600 km 240 + 49.7 kg 45.4 kg 15.7 % 91 days
1400 km 240 + 46.8 kg 42.5 kg 14.8 % 85 days
2000 km 240 + 44.9 kg 40.7 kg 14.3 % 82 days

There is a certain discrepancy between the analytical calculations and numerical results
for propellant mass required during the escape trajectory. In the analytical case semi-
major axis tends to infinity for the calculation of required delta-V. Although for numerical
computation then infinity is not practicable, and it is more suitable to use the specific
orbital energy as a stopping condition instead. As a consequence, it is expected that
the numerically determined propellant mass is less than the analytical results since the
semi-major axis has a finite value at escape. Numerical and analytical results converge,
specifically for the altitude of 2000 km, when instead of using infinity af is substituted
with the escape radius for the NEXT Thruster. The resulting delta-V reduces to 6.040
km/s, leading to same propellant mass as the one which was numerically attained.

As electric propulsion is a fairly fast propulsion method, lower parking orbits do not
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increase escape time considerably. As stated previously, low parking orbits may be ben-
eficial in terms of minimising total number of launches. This warrants further research
in terms of payload gains, however going forward in this thesis an altitude of 2000 km is
used in order to best compare electric propulsion with solar sailing as in [6].

3.5.3 Escape trajectory for sunshade system

With the NEXT thruster the simulation of escape trajectories was carried out for the two
sunshade compositions which were outlined in [5]. This was detailed in section 2.1.3, and
in short the different values of the optical property Q for the sunshade gave the required
areal densities ρA = 21.9 g/m2 for Q = 0.5 and ρA = 8.8 g/m2 for Q = 0.2. With a bus
mass mbus comprised of 140 kg for the thruster and 44 kg for solar shade subsystems, as
well as a sail density of ρsail = 4 g/m2, the necessary sail area Asail and resulting sailcraft
mass mdry was determined according to

mdry = ρsail · Asail +mbus = ρA · Asail =⇒ Asail =
mbus

ρA − ρsail
(3.18)

The resulting sail areas and dry masses of the sailcraft are displayed in Table 3.6.

Table 3.6: Individual shade area and spacecraft dry mass for the optical parameters Q.

Sail area and dry mass
Q ρA Asail mdry

0.5 21.9 g/m2 10 279 m2 225.1 kg
0.2 8.8 g/m2 38 333 m2 337.3 kg

The simulation was then carried out from LEO at a 2000 km altitude until full escape
from Earth and yielded the trajectories in Figure 3.4 and specific values are presented in
Table 3.7.

Table 3.7: Values obtained from simulation of escape for Q-values.

Escape simulation for the two Q-values
Q Dry mass Propellant mass Final radial distance tescape
0.5 225.1 kg 38.3 kg 5.264 ·108 m 75.04 days
0.2 337.3 kg 57.9 kg 6.439 ·108 m 113.47 days

Compared to solar sailing, the mass of each sailcraft has increased from 55 kg to 264
kg (an increase of 380 %) or from 81 kg to 396 kg (an increase of 389 %) depending on
which Q-value is used.
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(a) Q = 0.5, m0 = 263.8 kg (b) Q = 0.2, m0 = 395.5 kg

Figure 3.4: Plots for launch from LEO to escape with the mass of the sunshade for each Q-value
included in the dry mass.

In order to produce the collective area of 3.79 · 1012 m2 the number of sailcrafts N was
computed and also the grand total mass M of the sunshade configuration as a whole.
This was then compared to the values Ns,Ms obtained by using solar sailing as means
of propulsion. Note that the total mass includes propellant mass in the case of electric
propulsion, which is to be consumed by the time the satellites are in place (and thus
total final mass is equal for both propulsion methods).

Table 3.8: The total number of spacecrafts N , their combined wet mass M and propellant mass
Mprop along with the corresponding values Ns,Ms for solar sailing.

Number of sailcrafts and mass
Q N = Atot

Asail
M Mprop Ns Ms

0.5 3.7 · 108 9.7 · 1010 kg 1.4 · 1010 kg 1.5 · 109 8.3 ·1010 kg
0.2 9.9 · 107 3.9 · 1010 kg 5.7 · 109 kg 4.2 · 108 3.4 ·1010 kg

As evident by Table 3.8, the total launch mass for the project would increase by 15-17
% which equates to an estimated additional cost of 300-700 billion US$ (for propellant).
There is also a significant reduction in time required for the maneuver, with 75 days com-
pared to 531 days (Q = 0.5) and 113 days compared to 285 days (Q = 0.2) respectively.

3.5.4 Travel to the sub-Lagrange point

Since the satellites now carry the additional weight of the electric thrusters the area of
each individual sail has increased to compensate. This might affect the viability of using
solar sailing as the means of propulsion from the point of escape to the final sub-Lagrange
point. An alternative is then to use the ion thrusters to carry the sunshades the entire
way, and can be done either to minimise the time required for this final maneuver or the
amount of additional propellant. Both results have been included in this section.

The final point is located on the Sun-Earth line with L′
1 = 0.0158 AU from the Earth,
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corresponding to the coordinates [x, y, z] = [−((1− µ)− L′
1), 0, 0] ≈ [−0.984197, 0, 0].

In order to cover both the escape spiral and the trajectory to L′
1 additional propellant

was added while using the same dry mass as specified in Table 3.6. The escape from
Earth was re-computed in the same way and with the same thruster parameters and
initial orbit in LEO as before. These resulting values were subsequently transformed into
the non-dimensional synodic coordinate system as described in 3.2.3 and a trajectory to
L′
1 determined using the direct method implemented as in 3.4.2.

With a low Q side of Q = 0.5, the coordinate transformation is presented in Table
3.9, trajectories in Figure 3.5, velocities in Figure 3.6 and thrust in Figure 3.7.

Table 3.9: Values for change of coordinates from Earth-Centered inertial to non-dimensional
synodic with Q = 0.5 for both cases of minimal time and minimal propellant.

Coordinate system transformation Q = 0.5
System, minimal x y z vx vy vz

ECI, time -1.1484·108 m -5.3641·107 m 0 m 862.6 m/s -842.1 m/s 0 m/s
CR3BP, time -1.0008 -0.0033 0.0014 0.0257 -0.0252 0.0112
ECI, prop 4.6564·108 m -2.6810·108 m 0 m 1077.1 m/s 568.9 m/s 0 m/s
CR3BP, prop -0.9969 -0.0016 0.0007 0.0345 0.0144 -0.0076

(a) Minimal time, mprop = 18.36 kg,
m0,0 = 286.60 kg, m0,esc = 244.90 kg

(b) Minimal propellant, mprop = 6.02 kg,
m0,0 = 274.90 kg, m0,esc = 234.94 kg

Figure 3.5: Trajectories to L′
1 for minimal time and minimal propellant with Q = 0.5. The

initial mass at the start in Earth orbit is m0,0 while m0,esc is the mass at the point of escape
from Earth, and mprop only denotes propellant for the 3 body trajectory.
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Figure 3.6: Velocity components during transfer to L′
1 for Q = 0.5
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Figure 3.7: Piece-wise constant thrust throughout the trajectory for Q = 0.5

With a low Q side of Q = 0.2, the coordinate transformation is presented in Table 3.10,
trajectories in Figure 3.8, velocities in Figure 3.9 and thrust in Figure 3.10.

Table 3.10: Values for change of coordinates from Earth-Centered inertial to non-dimensional
synodic with Q = 0.2 for both cases of minimal time and minimal propellant.

Coordinate system transformation Q = 0.2
System, minimal x y z vx vy vz

ECI, time 3.1421·107 m -6.6780·108 m 0 m 950.0 m/s -538.4 m/s 0 m/s
CR3BP, time -0.9998 -0.0041 0.0018 0.0278 -0.0168 0.0072
ECI, prop 9.6378 ·107 m -6.4687·108 m 0 m 1010.0 m/s -444.8 m/s 0 m/s
CR3BP, prop -0.9994 -0.0040 0.0017 0.0300 -0.0144 0.0059
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(a) Minimal time, mprop = 22.09 kg,
m0,0 = 426.40 kg, m0,esc = 363.86 kg

(b) Minimal propellant, mprop = 9.98 kg,
m0,0 = 408.00 kg, m0,esc = 348.20 kg

Figure 3.8: Trajectories to L′
1 for minimal time and minimal propellant with Q = 0.2. The

initial mass at the start in Earth orbit is m0,0 while m0,esc is the mass at the point of escape
from Earth, and mprop refers only to the propellant consumed during the 3 body trajectory.
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Figure 3.9: Velocity components during transfer to L′
1 for Q = 0.2
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Figure 3.10: Piece-wise constant thrust throughout the trajectory for Q = 0.2

A summary of results for the full trajectory with both values Q can be found in Table
3.11 below.

Table 3.11: Results for the trajectories to the sub-Lagrange point. Total mass is the mass of
all the satellites with propellant combined, propellant mass refers to total amount of propellant
consumed for the full trajectory, and transfer time is measured from start in LEO to arrival at
L′
1.

Summary of results for transfer to sub-L1

Q Minimal Initial mass Total mass Propellant mass Transfer time
0.5 Time 286.6 kg 10.6 · 1010 kg 2.2 · 1010 kg 117.66 days
0.5 Propellant 274.9 kg 10.2 · 1010 kg 1.7 · 1010 kg 147.77 days
0.2 Time 426.4 kg 4.2 · 1010 kg 8.4 · 109 kg 165.80 days
0.2 Propellant 408.0 kg 4.0 · 1010 kg 6.9 · 109 kg 237.33 days

Assuming that a suitable trajectory would be a combination of minimal time and min-
imal propellant, and once again comparing the launch mass using Table 3.8, the mass
increase is on average 25 % for Q = 0.5 and 21 % for Q = 0.2. This is corresponds to
∼ 1010 kg of propellant and could be equated to a launch cost of 350-1100 billion US$
for propellant mass alone.

With solar sailing the entire trajectory had a travel time of 603 days (Q = 0.5) or
373 days (Q = 0.2). Even in the minimal propellant cases the electric thrusters permit-
ted much shorter transfer times, with an estimated time 24.5 % that of solar sailing with
Q = 0.5 and 63.6 % with Q = 0.2 . The corresponding values for minimal time are 19.5
% and 44.5 %.
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Chapter 4

Discussion and Conclusions

4.1 Discussion

4.1.1 Partial and full trajectory with ion propulsion

The most critical segment of the trajectory for each sunshade is the escape from Earth.
This is because of the Van Allen radiation belts, starting at around a 600 km altitude
and extending to 60 000 km, as well as space debris and the complicated attitude control
required during such a transfer. Additionally, the remaining trajectory can be completed
using electric thrusters as well, eliminating the need for the shades to function as solar
sails. Parameters for the thruster affects the mass and time required for the manoeuvre,
and one with a high specific impulse but moderate power requirements was selected as
suitable in order to limit overall costs.

The partial trajectory, meaning where electric thrusters were only used to escape Earth,
increased the launch mass of the sunshade system by 15 - 17 % equating to propellant
mass in the order 109− 1010 kg. If electric thrusters were instead used for the full trajec-
tory, where the sunshades would not need to act as means of propulsion, the increase of
the system’s mass was around 21 - 25 % of that obtained with solar sailing and this case
gave a required propellant mass of ∼ 1010 kg. In both cases this equates to increased
launch costs in the order 300-1000 billion US$ and further costs due to the propellant
itself, meaning that electric thrusters is a more expensive alternative for the sunshade
project than solar sailing would be. Even so, depending on future development of solar
sailing as a means of propulsion, it might be the more feasible option.

Another important result is that in all the cases studied electric propulsion permitted
much shorter transfer times than solar sailing did. For the best case with minimal time,
the full trajectory took approximately 20 % of the time, and on average the ratio was
circa 22 % and 54 % for Q = 0.5 and Q = 0.2 respectively. This aspect is especially
advantageous considering that in the original study optimal orientation of the sail was
assumed at all times, and thus the real sailing transfer time could be much longer. While
not a pivotal aspect of the project, a shorter transfer time is beneficial because of the
lessened radiation exposure of the electrical equipment, solar panels and of course the
shade membranes themselves. However, this study has not included the diminished per-
formance of the thrusters and solar panels due to the degradation which does take place,
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and as a consequence the real transit times could be larger than the ones presented in
this study as well.

4.1.2 Initial parking orbits and number of launches

In section 3.3.1 and 3.5.2 different initial parking orbits in LEO were studied, meaning the
different altitudes from which ion thrusters would commence the escape spiral transfer.
The difference between starting at 600 km to 2000 km was 5 kg of more propellant and
9 days of travel time for the lower altitude, two comparably quite small additions to the
manoeuvre as a whole. However, the low initial orbit would introduce energy losses due
to atmospheric drag which in turn would also give rise to additional wear and reduced
lifetime of electrical components , as well as possible complications due to low orbiting
satellites such as the Starlink constellation. Nonetheless, the reason a lower altitude
should be considered are the possible payload gains.

An analysis of launching vehicles was performed by [6] and found that the most cost-
effective option in development was the Starship rocket by SpaceX. The Starship is to
be a fully reusable a two stage rocket, and has a payload capacity of 100 000 kg when
launched to a 500 km high-inclination orbit. However this would be reduced to one-fifth
if the final orbit was 40 000 km [48, p.6]. This would mean that the total number of
launches could be significantly reduced if a low initial parking orbit was used instead
of the higher one required for solar sailing. Starting at a low orbit - especially below
1000 km - is not feasible for solar sailing, primarily because of the much larger impact
of atmospheric drag on the sails but also the risk space debris poses to their integrity.
In this regard, electric propulsion would be advantageous since the addition of required
propellant mass and time is minor.

4.1.3 Chemical propulsion to geostationary orbit

The large mass of the sunshade project that must be launched as well as the long dis-
tance that must be covered for the final position makes chemical propulsion somewhat
ineffective for the whole space mission. However chemical propulsion is a well-tested
propulsion method and it provides benefits in terms of performing rapid orbital maneu-
vers or shielding the sunshades from radiation related damages as well as space debris.

Thus another possible propulsion scheme for the sunshade configuration is to use chem-
ical propulsion well into geostationary transfer orbit (GTO) and thereafter begin solar
sailing as means of propulsion. This allows sunshades to spend less time in the Van
Allen radiation belts which reduced the negative effects on the bus components for the
sunshades. However, increasing the target orbit from LEO to GTO increases the total
number of launches as the payload capacity of the Starship decreases from maximum of
150 000 kg in LEO to 21 000 kg in GTO [48, p.6]. The significant reduction of payload
capacity results in five fold rise of total number of launches and consequently the total
cost of the Sunshade project.
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4.1.4 Environmental impact and production

The Starship propellant is comprised of methane as fuel and liquid oxygen as oxidizer.
The exhaust from the fuel can be decreased to almost zero, provided that the propulsion
unit is efficient and combustion is complete [49]. Methane provides great environmen-
tal benefits compared to other chemical propellants such as kerosene and hydrogen, as it
burns more cleanly than kerosene and provides more energy than hydrogen. On the other
hand, most methane today comes from fossil fuel extraction and during production a sig-
nificant amount can escape into the atmosphere. As methane is a potent greenhouse gas
this leaked gas accelerates global warming [50]. There have been suggestions ([51], [52])
to produce more ”green” methane through a variety of methods although more research
is required. Obtaining the large amount of methane needed for the sunshade project will
then contribute to the global wide-scale mining of fossil fuels, counterproductive to the
aim of the project.

Xenon is a noble gas and is mainly contained to the Earth’s atmosphere, although small
amounts can be found in the seas as well as in the Earth’s crust. Worldwide production
of xenon is less than 1 tonne per year but reserves of the gas amounts to 2 billion tonnes
[53, p.8]. For the electrically propelled sunshade project the total propellant mass of
xenon required is of the order 1010 kg. This amounts to a staggering 1 % of all xenon
reserves found on Earth. This level of xenon production would consume a huge amount
of energy as it is extracted from the atmosphere, and a complete change in the current
approach since most xenon production today is a byproduct of other air liquefaction
processes. According to reference [54], a direct xenon extraction plant with 100 % ex-
traction efficiency might be able to produce 1 tonne of xenon per year with same cost per
kilogram as used in section 3.5.1. For the electrical sunshade project, up to a million of
comparable xenon extraction plants must be built beforehand. To put this into perspec-
tive, approximately 4 000 air separation plants have been built by the lead supplier since
1902 [55]. Furthermore, the extraction plants must be able to function simultaneously
during a 20-year period requiring a huge amount of electricity. These preparations may
drastically increase the cost for electrically propelled sunshade project.

Xenon is preferred with ion engines and Hall thrusters, however issues of cost and avail-
ability make argon and krypton, also noble gases, potential substitutes. Performance
specifications are diminished with argon and krypton, since these atoms are less massive
than xenon and require more energy to ionize. A related downside of using krypton or
argon is the increase in the trajectory time. With an Isp of 2000 s, a krypton mission
takes 16 % longer than a xenon mission while an argon mission requires 63 % more time.
For larger specific impulses such as NEXT Thruster, these delays get shorter [54]. A
comprehensive study between krypton and argon for the choice of propellant has been
conducted in [54] and the most promising propellant after xenon, in terms of noble gases,
is krypton. As krypton can be produced similarly to xenon but there is roughly 10 times
more of it in the atmosphere, a krypton mission will have a cost about 1

10
that of xenon.

Although xenon is a noble gas, it is nonetheless more reactive than other noble gases.
Emitting large amount of ionized xenon in the exosphere during an escape trajectory will
change its composition, as xenon is naturally absent at such altitudes [53]. Furthermore,
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as the use of electric propulsion at such great scale has never been attempted before, it
is unclear what impact a large amount of ions in the exosphere will have on the atmo-
spheric chemistry. Xenon has shown to have some potential for chemical reactions in
the lower altitudes [53, p.25-27], and the choice of propellant makes this type of analysis
compulsory for other non-inert propellants, e.g. iodine.

4.1.5 Solar sail area and feasibility

Equipping the satellites with electric thrusters would raise the dry mass of the space-
crafts considerably, and using estimates based off of power requirements this increase was
found to be close to 400 %. In order for the minimal mass point along the Sun-Earth
line to be at equilibrium, then the area of each individual sail would need to increase
in order to off-set the gravitational forces. This area was computed by using the areal
densities for each sail efficiency factor and the results are displayed in Table 3.8. The
resulting sail areas are very large, meaning that the additional mass might affect the
feasibility of using solar sailing to travel to the sub-Lagrange point. If Q was equal to 0.5
the sail area was ∼ 10 000 m2, whereas Q = 0.2 gave a sail area nearly four times that.
The size of the solar sail affects the viability of it to be used as a means of propulsion,
and much research is ongoing within the field. For example, the Solar cruiser mission
is set to launch in 2025 and its aim is to demonstrate solar sail technologies by trav-
eling to the vicinity of L1. This mission features a sail membrane developed by NASA
with an area of 1653 m2, but is however scalable - even to sails larger than 10 000 m2 [56].

Using the sail efficiency factor which is state-of-the-art currently, then the resulting sail
feasibly be used as a means of propulsion, assuming that prerequisite development would
take place before implementation of the project. On the other hand, the low, prospective
value of Q = 0.2 gave an area which could most likely not be used for sailing. The
alternatives in that case are then to either select a sub-Lagrange point which does not
coincide with the minimal mass point for the system or to use electric thrusters for the
entire trajectory. The latter option might warrant further study to determine if an area
this large could even have enough maneuverability for station-keeping.

4.1.6 Accuracy and assumptions

Numerical results and parameters

Rather than extrapolating and estimating future development in electric thruster tech-
nology, specific designs with known specifications were studied. The main reason for this
was so that their tabulated power requirements could be used in order to find approxi-
mate ranges for the spacecrafts dry mass. By the time of implementation of the sunshade
project many of the technologies involved are likely to have progressed much further and
the spacecraft parameters could be quite different.

The solutions for trajectories to L′
1 have been computed in a chaotic system, meaning

that very different outcomes can be obtained even if the variations in initial conditions
are small. In particular parameters such as allotted propellant mass affected the coordi-
nates and velocities at the point of escape, and thus simulations yielded dissimilar values
for elapsed time and consumed propellant after only a small change of the initial mass.
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Furthermore, the direct method does not necessarily converge to a globally optimal so-
lution when the trajectory is computed. This means that the resulting trajectories, the
values for time, and for required mass are only estimates suitable for rough comparisons.

Transformations between the celestial coordinate systems depend on the time of year, as
the x-axis of the ECI coordinate system is fixed relative to the stars while x-axis of the
CRTBP follows the rotation of the Earth around the Sun, and is always aligned with
the Sun-Earth line. These coincide during the vernal equinox, and since the date for
the launch of each satellite of the constellation will differ the axes were assumed to be
parallel at the time of escape.

The first trajectory segment, the escape from Earth, assumed planar dynamics. This
model works adequately when only gravitational and centripetal forces affect the space-
craft. If perturbation forces, such as Earth oblateness effects, were included in the com-
putations these could contribute to a z-displacement, and while this should not majorly
affect the results it is worth noting. More accurate trajectories could be determined by
using more refined methods and many simulation programs for similar purposes have
already been developed, for example software such as the General Mission Analysis Tool
(GMAT) by NASA.

Solar electric propulsion and Earth’s shadow

Both solar sailing and solar electric propulsion (SEP) are propulsion methods that use
sunlight to create thrust. This subjects certain requirements on the design of the space-
craft. For solar sailing, the results are based on an optimal control system that optimises
the orientation of the solar sail such that the maximal thrust possible for that thrust
segment can be achieved. For SEP the maximal thrust occurs only when solar panels
are directed towards the Sun providing the power-consuming thrusters with maximum
electric power, requiring a control system which was assumed to be equipped by the
spacecrafts. To be able to thrust during eclipses, additional mass in terms of recharge-
able batteries has been accounted for in section 3.5.1. This is a common practice for
time driven space missions as it allows for shorter transit time and less time spent in
radiation belts. However, thrust through eclipses restricts the maximal thrust available
at the sunlit portion of the trajectory as some of the solar power collected at this time
must be used to recharge the batteries, and the extent of the decrease in maximal thrust
merits further study.

Meanwhile, the sunshade project is not a time critical mission and cost-wise along with
feasibility of solar sails it may be more advantageous to let spacecraft coast during
eclipses. This will reduce the power output mass by half, replacing it with a longer
transit time and as a result higher degradation of solar cells and thrusters due to ra-
diation. Consequently, the dry mass of a single satellite may still increase in order to
incorporate more radiation shielding equipment, the mass of propellant tanks, or other
mass margins due to preliminary design [57]. Therefore, the dry mass of the propulsion
systems in this thesis are only approximate. For more accurate values, weighing of the
trade-offs between mass of batteries and radiation related damages to the subsystems
must be done.
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4.2 Summary and Conclusions
In order to limit the effects of global warming and reduce the temperature increase by 1
◦C, a space-based geoengineering scheme was proposed which would block 1 % of incident
solar radiation. This solution could be implemented in parallel to other environmental
efforts. The scheme would consist of the deployment of a large number of sunshades
in the vicinity of the first Lagrange point of the Sun-Earth system, and these would
constitute a sunshade system which would shield Earth from the solar radiation. As an
extension of a feasibility study for the implementation of this large-scale mission, the
focus was on comparing electric propulsion to solar sailing as a means of propulsion for
the spacecrafts. Firstly the background covered essentials in electric propulsion systems
and spaceflight mechanics, and then an investigation was performed by defining the
spacecraft configurations and computing trajectories to a point of escape from Earth
as well as the final equilibrium point. In order to account for the power demands of
electric thrusters each spacecraft’s dry mass would need to become approximately 5
times larger compared to the solar sailing configuration, and for the full mission the the
combined mass of the required propellant mass was of the order 1010 kg. The additional
launch cost due to higher wet mass of 15 - 25 % was estimated to the order of 300-
1000 billion US$. Despite the higher associated costs, electric propulsion could still
be a beneficial choice for the implementation of a sunshade system since it would allow
shorter transfer times from Earth for each shade. It was found that the transfer time with
electric propulsion would be about one-half or one-fifth that of solar sailing, depending
on what spacecraft parameters are deemed feasible. A shorter transfer time is preferable
because it reduces the radiation exposure and subsequent degradation of the spacecraft’s
systems, most notably the shade membranes themselves. Another advantage of electric
propulsion over solar sailing is that it allows a much lower initial parking orbit, and
while this would increase the aforementioned radiation exposure it would also reduce the
launch costs since a lower altitude entails a higher payload capacity for most launchers.
Nevertheless, the use of electric propulsion at this scale requires many prior advancements
in inert propellant extraction and possibly also a wide-scale construction of propellant
manufacturing plants.
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