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Similarly ⇧A,C [B] indicates the projection of B onto the
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while the shorthand Wt0 := W[t0,t0],N is used to denote
the Hankel containing a single row, namely:

Wt0 :=
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i
. (4)

2 Setting and goal

Consider an unknown discrete-time, linear time-
invariant (LTI) stochastic plant, whose behaviour can
always be described by the so-called innovation-form
equations

⇢
x(t+ 1) = Ax(t) +Bu(t) +Ke(t)
y(t) = Cx(t) +Du(t) + e(t),

t 2 Z (5)

where x(t) 2 Rn, u(t) 2 Rm and e(t) 2 Rp are the
state, input and innovation process respectively, while
y(t) 2 Rp is the corresponding output signal. Without
loss of generality we shall assume that (5) is minimal
(i.e., reachable and observable).

Given a reference signal yr(t), t 2 Z, and a control hori-
zon T , the receding horizon predictive control problem
can be framed as follows:

minimize
u(k),k2[t,t+T )
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(6a)

s.t. x(k+1)=Ax(k)+Bu(k)+Ke(k), k2 [t, t+T ),
(6b)

y(k)=Cx(k) +Du(k) + e(k), k 2 [t, t+ T ), (6c)
x(t) = xinit, (6d)
u(k) 2 U , E[y(k)] 2 Y, k 2 [t, t+ T ), (6e)

where xinit is the state at time t, e(k) is a zero mean noise
with variance V ar{e(k)}, the sets U , Y denote inputs

and output constraints, and the expectation E[·] is taken
w.r.t. the future noise sequence e(k), k 2 [t, t+ T ), and
conditionally on the initial state xinit and the future
input trajectory uf := {u(k), k 2 [t, t+T )}. The tunable
symmetric weights Q 2 Rp⇥p and R 2 Rm⇥m, with Q ⌫

0 and R � 0, have to be selected to trade-o↵ between
tracking performance and the required control e↵ort. For
simplicity, without loss of generality, from now on we
will consider a constant reference along the prediction
horizon, i.e.,

yr(k) = yr(t), k 2 [t, t+ T ).

Our goal is to solve problem (6) when the systems matri-
ces A,B,C,D,K are not known and only a sequence of
input output data DNdata = {u(j), y(j)}Ndata

j=1 collected

in open loop 2 from system (5) is available.

2.1 Features of the predictive control problem

We now elaborate on the optimization problem (6) and
make two important observations:

1. Problem (6) can be equivalently formulated only in
terms of the so called “deterministic” part of the
stochastic system (5), i.e., the one depending only
on the control input and the initial state, but not
on the noise e(k).

2. The initial state xinit at time t does not have to be
available. Indeed, it can be accounted for with arbi-
trary accuracy based on a su�ciently long window
of past input-output observations.

To show that the first point holds, it is useful to rewrite
the control problem (6) exploiting the decomposition of
second order moments as the sum of squared means plus
variance, i.e.,

E
⇥
ky(k)� yr(k)k

2
Q

⇤
= kE [y(k)]� yr(k)k

2
Q
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+ E
⇥
ky(k)� E [y(k)] k2

Q

⇤
| {z }

independent of u(k)

Since the variance term E[ky(k)�E[y(k)]k2
Q
] is indepen-

dent of the input signal u(k), k 2 [t, t+T ), only the con-
ditional (given xini and uf ) mean value of the output,
namely y

d(k) := E[y(k)] a↵ects the optimization prob-
lem. Denoting with x

d(k) the conditional mean of x(k),
i.e. xd(k) := E[x(k)], it is straightforward to see that the
optimal control problem (6) can be equivalently recast

2
Extension to data collected in closed-loop is possible. Yet,

for the sake of exposition, its treatment is deferred to future

publications.
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2 NCCR

“noise” ( = unmeasurable stationary signal)

3 Introduction

Direct data-driven control refers to the science of learning feedback controllers from data, without first undertaking
a full modeling study of the plant to control [16]. Such a direct mapping of data onto the control action is indeed
advisable in real-world problems, as modeling usually takes about 75% of the time devoted to a control project
[17], and accurate modeling for control requires significant time and several (costly) technical expertises, e.g., in the
process domain and in the statistical tools for system identification. Additionally, accurate modeling may go well
beyond what is strictly necessary for control purposes only, since often times rather limited knowledge of the system
dynamics may be required to achieve the desired control objectives [21].
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3 Introduction

Direct data-driven control refers to the science of learning feedback controllers from data, without first undertaking
a full modeling study of the plant to control [16]. Such a direct mapping of data onto the control action is indeed
advisable in real-world problems, as modeling usually takes about 75% of the time devoted to a control project
[17], and accurate modeling for control requires significant time and several (costly) technical expertises, e.g., in the
process domain and in the statistical tools for system identification. Additionally, accurate modeling may go well
beyond what is strictly necessary for control purposes only, since often times rather limited knowledge of the system
dynamics may be required to achieve the desired control objectives [21].

Early attempts in this direction date back to 1942, with the first studies by Ziegler and Nichols about PID auto-
tuning [30]. More sophisticated, optimization based, approaches have been derived since then for fixed-order controller
tuning, leading to a portfolio of techniques suitable for di↵erent problem formulations, see, e.g., [14,6,15,22]. However,
it is only recently that, with the availability of large datasets and unparalleled computing power, such a paradigm
shift in control design could be extended to more complex control architectures. For instance in the deterministic
setting, by relying on the so-called “fundamental lemma” [28], model equations can be replaced by suitable data-based
constraints 1 in the formulation of a Model Predictive Control (MPC) schemes, as discussed e.g. in [11] or [5]. Such
a data-based framework may lead to di↵erent performance than traditional model-based MPC as it shows unique
features. For instance, the sub-optimality gap measuring the control performance with respect to the optimal model-
based control (namely, model-based control using the real model of the system) vanishes with the size of the dataset.
Moreover, model-free predictive control may indirectly address the bias/variance trade-o↵ in a more e�cient manner;
for instance it will not incur in the asymptotic bias induced by inaccurate modeling when complexity constraints
are imposed on the model structure, as discussed in [23]. Nonetheless, as currently addressed, the replacement of
the description of the system dynamics with data matrix equalities (or inequalities) is stricly speaking valid only
in case of purely deterministic systems. It follows that the ubiquitous presence of “noise” inevitably leads to some
approximations, which in turn may deteriorate the closed-loop performance.

The problem of noise and unmeasurable disturbance inputs in direct data-driven predictive control has been clear
from the start, so di↵erent solutions have been proposed so far. In [5], the authors prove practical exponential stability
of the closed loop in the presence of bounded additive output noise. The key ingredients are two: (i) some bounded
slack variables to account for both the noisy online measurements and for the noisy data used for prediction, and
(ii) some suitable regularization terms. In [2], a slightly di↵erent scheme is used, which computes the data-driven
reachable set based on a matrix zonotope recursion starting from the measured output. For this scheme, the authors
show they can guarantee robust constraint satisfaction, again in case of bounded process and measurement noises.
The case of stochastic (white) measurement noise is addressed in [29], where a maximum likelihood framework is
proposed to estimate the data-based constraints aimed to replace the model equations in the MPC formulation.
In [29], an iterative two-stage approach is considered, where at each iteration first a model encoded by a data
matrix constraint must be identified and then the online predictive control is computed. An approach to handle
stochastic noise in the direct framework proposed in [11] and [5] is instead given in the recent paper [12]. In the
above contribution, the authors exploit regularization as the key tool to handle the presence of noise in the output
measurements, and empirically discuss the performance of di↵erent regularization schemes. We should remark that
the work in [12] concerns only the open-loop predictive control problem, and not the receding horizon closed-loop
implementation.

In this paper, we delve deep into the structure of data matrices in a stochastic framework, where both measurement
as well as process noise are allowed, thus accounting for unmeasurable stochastic inputs a↵ecting the dynamical
behaviour of the controlled system. The stochastic nature of measured data is fully exploited to derive the data-driven
formulation of the optimal constrained control problem. Finally, we provide a full receding-horizon implementation.
Specifically, the novel contributions of our paper are:

1
Such constraints can also be seen as an implicit, nonparametric, mapping of the input/output relationships. According to

this interpretation, some researchers legitimately prefer to denote the strategies described herein as “indirect”. For this reason,

we will simply talk about data-driven predictive control from now on.
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GENERAL FORMULATION

Assumptions:

• Model M = {�u

k
,�y

k
; k = 1, ..,1} (unknown, possibly infinite dimensional)

• Prior distribution M ⇠ p(M)

Given (at any “present” time t)

• zini := {u(s), y(s); s < t}: initial conditions
• D: I/O data from the system
• U , Y: constraint sets
• `t(uf ): loss function

Find Optimal uf (future control inputs) such that

1. E[`t(uf )|D] is minimized
2. Constraints are satisfied (possibly probabilistically)

Given (at any “present” time t)

• zini := {u(s), y(s); s < t}: initial conditions
• D: I/O data from the system
• U , Y: constraint sets
• Lt(uf ): loss function (function of zini, M)

Find Optimal uf (future control inputs) such that

1. E[Lt(uf )|D] is minimized
2. Constraints are satisfied (possibly probabilistically)

what do we need?

If ↵ = 1 CV aR = E[Lt(uf )|D]

•

E[Lt(uf )|D] ( p(M|D)

E[`t(uf )|D]
| {z }

= E[E[`t(uf )|M]|D]

Lt(uf ) := E[`t(uf )|M]

`t(uf ) = kyr � yfk
2
Q
+ kur � ufk

2
R

Lt(uf )

QUESTION: is this system identification?
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setting, by relying on the so-called “fundamental lemma” [28], model equations can be replaced by suitable data-based
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The problem of noise and unmeasurable disturbance inputs in direct data-driven predictive control has been clear
from the start, so di↵erent solutions have been proposed so far. In [5], the authors prove practical exponential stability
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show they can guarantee robust constraint satisfaction, again in case of bounded process and measurement noises.
The case of stochastic (white) measurement noise is addressed in [29], where a maximum likelihood framework is
proposed to estimate the data-based constraints aimed to replace the model equations in the MPC formulation.
In [29], an iterative two-stage approach is considered, where at each iteration first a model encoded by a data
matrix constraint must be identified and then the online predictive control is computed. An approach to handle
stochastic noise in the direct framework proposed in [11] and [5] is instead given in the recent paper [12]. In the
above contribution, the authors exploit regularization as the key tool to handle the presence of noise in the output
measurements, and empirically discuss the performance of di↵erent regularization schemes. We should remark that

1
Such constraints can also be seen as an implicit, nonparametric, mapping of the input/output relationships. According to

this interpretation, some researchers legitimately prefer to denote the strategies described herein as “indirect”. For this reason,

we will simply talk about data-driven predictive control from now on.
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• U , Y: constraint sets
• Lt(uf ): loss function (function of zini, M)

Find Optimal uf (future control inputs) such that

1. E[Lt(uf )|D] is minimized
2. Constraints are satisfied (possibly probabilistically)

what do we need?

If ↵ = 1 CV aR = E[Lt(uf )|D]

•

E[Lt(uf )|D] ( p(M|D)

E[`t(uf )|D]
| {z }

= E[E[`t(uf )|M]|D]

Lt(uf ) := E[`t(uf )|M]

`t(uf ) = kyr � yfk
2
Q
+ kur � ufk

2
R

Lt(uf )

QUESTION: is this system identification?

6



Z�

t
:= �{z(s) := [u(s); y(s)], s < t}

Data D := {z(k) := [u(k); y(k)] : k = 1, .., Ns} measured historical data, possibly collected in closed-loop

GENERAL FORMULATION

Assumptions:

• Model M = {�u

k
,�y

k
; k = 1, ..,1} (unknown, possibly infinite dimensional)

• Prior distribution M ⇠ p(M)

Given (at any “present” time t)

• zini := {u(s), y(s); s < t}: initial conditions
• D: I/O data from the system
• U , Y: constraint sets
• `t(uf ): loss function

Find Optimal uf (future control inputs) such that

1. E[`t(uf )|D] is minimized
2. Constraints are satisfied (possibly probabilistically)

Given (at any “present” time t)

• zini := {u(s), y(s); s < t}: initial conditions
• D: I/O data from the system
• U , Y: constraint sets
• Lt(uf ): loss function (function of zini, M)

Find Optimal uf (future control inputs) such that

1. E[Lt(uf )|D] is minimized
2. Constraints are satisfied (possibly probabilistically)

what do we need?

If ↵ = 1 CV aR = E[Lt(uf )|D]

•

E[Lt(uf )|D] ( p(M|D)

E[`t(uf )|D]
| {z }

= E[E[`t(uf )|M]|D]

Lt(uf ) := E[`t(uf )|M]

`t(uf ) = kyr � yfk
2
Q
+ kur � ufk

2
R

Lt(uf )

QUESTION: is this system identification?

6

Z�

t
:= �{z(s) := [u(s); y(s)], s < t}

Data D := {z(k) := [u(k); y(k)] : k = 1, .., Ns} measured historical data, possibly collected in closed-loop

GENERAL FORMULATION

Assumptions:

• Model = ✓ = {�k, k; k = 1, ..,1} 2 M (unknown, possibly infinite dimensional)
• Prior distribution ✓ ⇠ p(✓)

3 Introduction

Direct data-driven control refers to the science of learning feedback controllers from data, without first undertaking
a full modeling study of the plant to control [16]. Such a direct mapping of data onto the control action is indeed
advisable in real-world problems, as modeling usually takes about 75% of the time devoted to a control project
[17], and accurate modeling for control requires significant time and several (costly) technical expertises, e.g., in the
process domain and in the statistical tools for system identification. Additionally, accurate modeling may go well
beyond what is strictly necessary for control purposes only, since often times rather limited knowledge of the system
dynamics may be required to achieve the desired control objectives [21].

Early attempts in this direction date back to 1942, with the first studies by Ziegler and Nichols about PID auto-
tuning [30]. More sophisticated, optimization based, approaches have been derived since then for fixed-order controller
tuning, leading to a portfolio of techniques suitable for di↵erent problem formulations, see, e.g., [14,6,15,22]. However,
it is only recently that, with the availability of large datasets and unparalleled computing power, such a paradigm
shift in control design could be extended to more complex control architectures. For instance in the deterministic
setting, by relying on the so-called “fundamental lemma” [28], model equations can be replaced by suitable data-based
constraints 1 in the formulation of a Model Predictive Control (MPC) schemes, as discussed e.g. in [11] or [5]. Such
a data-based framework may lead to di↵erent performance than traditional model-based MPC as it shows unique
features. For instance, the sub-optimality gap measuring the control performance with respect to the optimal model-
based control (namely, model-based control using the real model of the system) vanishes with the size of the dataset.
Moreover, model-free predictive control may indirectly address the bias/variance trade-o↵ in a more e�cient manner;
for instance it will not incur in the asymptotic bias induced by inaccurate modeling when complexity constraints
are imposed on the model structure, as discussed in [23]. Nonetheless, as currently addressed, the replacement of
the description of the system dynamics with data matrix equalities (or inequalities) is stricly speaking valid only
in case of purely deterministic systems. It follows that the ubiquitous presence of “noise” inevitably leads to some
approximations, which in turn may deteriorate the closed-loop performance.

The problem of noise and unmeasurable disturbance inputs in direct data-driven predictive control has been clear
from the start, so di↵erent solutions have been proposed so far. In [5], the authors prove practical exponential stability
of the closed loop in the presence of bounded additive output noise. The key ingredients are two: (i) some bounded
slack variables to account for both the noisy online measurements and for the noisy data used for prediction, and
(ii) some suitable regularization terms. In [2], a slightly di↵erent scheme is used, which computes the data-driven
reachable set based on a matrix zonotope recursion starting from the measured output. For this scheme, the authors
show they can guarantee robust constraint satisfaction, again in case of bounded process and measurement noises.
The case of stochastic (white) measurement noise is addressed in [29], where a maximum likelihood framework is
proposed to estimate the data-based constraints aimed to replace the model equations in the MPC formulation.
In [29], an iterative two-stage approach is considered, where at each iteration first a model encoded by a data
matrix constraint must be identified and then the online predictive control is computed. An approach to handle
stochastic noise in the direct framework proposed in [11] and [5] is instead given in the recent paper [12]. In the
above contribution, the authors exploit regularization as the key tool to handle the presence of noise in the output
measurements, and empirically discuss the performance of di↵erent regularization schemes. We should remark that
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equality up to OP (1/
p
N). ⇧A[B] denotes the orthogo-

nal projection of the (rows of the) matrix B on the row
span of the matrix A, i.e.,

⇧A[B] = BA
>(AA

>)†A.

Similarly ⇧A,C [B] indicates the projection of B onto the
row span of A and C. Finally, given a signal w(k) 2

Rs, we define the associated Hankel matrix W[t0,t1],N 2

Rs(t1�t0+1)⇥N as:

W[t0,t1],N :=
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...

...
. . .
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w(t1) w(t1+1) . . . w(t1+N�1)
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777775
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(3)
while the shorthand Wt0 := W[t0,t0],N is used to denote
the Hankel containing a single row, namely:

Wt0 :=
1

p
N

h
w(t0) w(t0+1) · · · w(t0+N�1)

i
. (4)

2 Setting and goal

Consider an unknown discrete-time, linear time-
invariant (LTI) stochastic plant, whose behaviour can
always be described by the so-called innovation-form
equations

⇢
x(t+ 1) = Ax(t) +Bu(t) +Ke(t)
y(t) = Cx(t) +Du(t) + e(t),

t 2 Z (5)

where x(t) 2 Rn, u(t) 2 Rm and e(t) 2 Rp are the
state, input and innovation process respectively, while
y(t) 2 Rp is the corresponding output signal. Without
loss of generality we shall assume that (5) is minimal
(i.e., reachable and observable).

Given a reference signal yr(t), t 2 Z, and a control hori-
zon T , the receding horizon predictive control problem
can be framed as follows:

minimize
u(k),k2[t,t+T )

1

2

"
t+T�1X

k=t

E
⇥
ky(k)�yr(k)k

2
Q

⇤
+ku(k)k2

R

#

(6a)

s.t. x(k+1)=Ax(k)+Bu(k)+Ke(k), k2 [t, t+T ),
(6b)

y(k)=Cx(k) +Du(k) + e(k), k 2 [t, t+ T ), (6c)
x(t) = xinit, (6d)
u(k) 2 U , E[y(k)] 2 Y, k 2 [t, t+ T ), (6e)

where xinit is the state at time t, e(k) is a zero mean noise
with variance V ar{e(k)}, the sets U , Y denote inputs

and output constraints, and the expectation E[·] is taken
w.r.t. the future noise sequence e(k), k 2 [t, t+ T ), and
conditionally on the initial state xinit and the future
input trajectory uf := {u(k), k 2 [t, t+T )}. The tunable
symmetric weights Q 2 Rp⇥p and R 2 Rm⇥m, with Q ⌫

0 and R � 0, have to be selected to trade-o↵ between
tracking performance and the required control e↵ort. For
simplicity, without loss of generality, from now on we
will consider a constant reference along the prediction
horizon, i.e.,

yr(k) = yr(t), k 2 [t, t+ T ).

Our goal is to solve problem (6) when the systems matri-
ces A,B,C,D,K are not known and only a sequence of
input output data DNdata = {u(j), y(j)}Ndata

j=1 collected

in open loop 2 from system (5) is available.

2.1 Features of the predictive control problem

We now elaborate on the optimization problem (6) and
make two important observations:

1. Problem (6) can be equivalently formulated only in
terms of the so called “deterministic” part of the
stochastic system (5), i.e., the one depending only
on the control input and the initial state, but not
on the noise e(k).

2. The initial state xinit at time t does not have to be
available. Indeed, it can be accounted for with arbi-
trary accuracy based on a su�ciently long window
of past input-output observations.

To show that the first point holds, it is useful to rewrite
the control problem (6) exploiting the decomposition of
second order moments as the sum of squared means plus
variance, i.e.,

E
⇥
ky(k)� yr(k)k

2
Q

⇤
= kE [y(k)]� yr(k)k

2
Q
+

+ E
⇥
ky(k)� E [y(k)] k2

Q

⇤
| {z }

independent of u(k)

Since the variance term E[ky(k)�E[y(k)]k2
Q
] is indepen-

dent of the input signal u(k), k 2 [t, t+T ), only the con-
ditional (given xini and uf ) mean value of the output,
namely y

d(k) := E[y(k)] a↵ects the optimization prob-
lem. Denoting with x

d(k) the conditional mean of x(k),
i.e. xd(k) := E[x(k)], it is straightforward to see that the
optimal control problem (6) can be equivalently recast

2
Extension to data collected in closed-loop is possible. Yet,

for the sake of exposition, its treatment is deferred to future

publications.
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3 Introduction

Direct data-driven control refers to the science of learning feedback controllers from data, without first undertaking
a full modeling study of the plant to control [16]. Such a direct mapping of data onto the control action is indeed
advisable in real-world problems, as modeling usually takes about 75% of the time devoted to a control project
[17], and accurate modeling for control requires significant time and several (costly) technical expertises, e.g., in the
process domain and in the statistical tools for system identification. Additionally, accurate modeling may go well
beyond what is strictly necessary for control purposes only, since often times rather limited knowledge of the system
dynamics may be required to achieve the desired control objectives [21].
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Direct data-driven control refers to the science of learning feedback controllers from data, without first undertaking
a full modeling study of the plant to control [16]. Such a direct mapping of data onto the control action is indeed
advisable in real-world problems, as modeling usually takes about 75% of the time devoted to a control project
[17], and accurate modeling for control requires significant time and several (costly) technical expertises, e.g., in the
process domain and in the statistical tools for system identification. Additionally, accurate modeling may go well
beyond what is strictly necessary for control purposes only, since often times rather limited knowledge of the system
dynamics may be required to achieve the desired control objectives [21].

Early attempts in this direction date back to 1942, with the first studies by Ziegler and Nichols about PID auto-
tuning [30]. More sophisticated, optimization based, approaches have been derived since then for fixed-order controller
tuning, leading to a portfolio of techniques suitable for di↵erent problem formulations, see, e.g., [14,6,15,22]. However,
it is only recently that, with the availability of large datasets and unparalleled computing power, such a paradigm
shift in control design could be extended to more complex control architectures. For instance in the deterministic
setting, by relying on the so-called “fundamental lemma” [28], model equations can be replaced by suitable data-based
constraints 1 in the formulation of a Model Predictive Control (MPC) schemes, as discussed e.g. in [11] or [5]. Such
a data-based framework may lead to di↵erent performance than traditional model-based MPC as it shows unique
features. For instance, the sub-optimality gap measuring the control performance with respect to the optimal model-
based control (namely, model-based control using the real model of the system) vanishes with the size of the dataset.
Moreover, model-free predictive control may indirectly address the bias/variance trade-o↵ in a more e�cient manner;
for instance it will not incur in the asymptotic bias induced by inaccurate modeling when complexity constraints
are imposed on the model structure, as discussed in [23]. Nonetheless, as currently addressed, the replacement of
the description of the system dynamics with data matrix equalities (or inequalities) is stricly speaking valid only
in case of purely deterministic systems. It follows that the ubiquitous presence of “noise” inevitably leads to some
approximations, which in turn may deteriorate the closed-loop performance.

The problem of noise and unmeasurable disturbance inputs in direct data-driven predictive control has been clear
from the start, so di↵erent solutions have been proposed so far. In [5], the authors prove practical exponential stability
of the closed loop in the presence of bounded additive output noise. The key ingredients are two: (i) some bounded
slack variables to account for both the noisy online measurements and for the noisy data used for prediction, and
(ii) some suitable regularization terms. In [2], a slightly di↵erent scheme is used, which computes the data-driven
reachable set based on a matrix zonotope recursion starting from the measured output. For this scheme, the authors
show they can guarantee robust constraint satisfaction, again in case of bounded process and measurement noises.
The case of stochastic (white) measurement noise is addressed in [29], where a maximum likelihood framework is
proposed to estimate the data-based constraints aimed to replace the model equations in the MPC formulation.
In [29], an iterative two-stage approach is considered, where at each iteration first a model encoded by a data
matrix constraint must be identified and then the online predictive control is computed. An approach to handle
stochastic noise in the direct framework proposed in [11] and [5] is instead given in the recent paper [12]. In the
above contribution, the authors exploit regularization as the key tool to handle the presence of noise in the output
measurements, and empirically discuss the performance of di↵erent regularization schemes. We should remark that
the work in [12] concerns only the open-loop predictive control problem, and not the receding horizon closed-loop
implementation.

In this paper, we delve deep into the structure of data matrices in a stochastic framework, where both measurement
as well as process noise are allowed, thus accounting for unmeasurable stochastic inputs a↵ecting the dynamical
behaviour of the controlled system. The stochastic nature of measured data is fully exploited to derive the data-driven
formulation of the optimal constrained control problem. Finally, we provide a full receding-horizon implementation.
Specifically, the novel contributions of our paper are:

1
Such constraints can also be seen as an implicit, nonparametric, mapping of the input/output relationships. According to

this interpretation, some researchers legitimately prefer to denote the strategies described herein as “indirect”. For this reason,

we will simply talk about data-driven predictive control from now on.
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Assumptions:

1. Linear time-invariant predictor

y(t) = ŷ(t|t� 1) + e(t)

ŷ(t|t� 1) =
1X

k=1

�u

k
ut�k + �y

k
yt�k

1X

k=1

|�u

k
| < 1

1X

k=1

|�y

k
| < 1

2. (Conditional) Martingale di↵erence property with constant conditional variance
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GENERAL FORMULATION
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• Model M = {�u
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; k = 1, ..,1} (unknown, possibly infinite dimensional)

• Prior distribution M ⇠ p(M)

Given (at any “present” time t)

• zini := {u(s), y(s); s < t}: initial conditions
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Remark: Sample Complexity Model Class >> Ndata = |D|

Long story short (two extreme alternatives)

1. Model free/nonparametric: Constrain M so that sample complexity ' Ndata = |D|

(LONG ARX MODEL/Nonparametric stable model)

2. Model based: Constrain M to be of “low (sample) complexity”

• Spoiler #1: Alternative 1 is basically the route followed by “modern”
data-driven MPC approaches (based on Willems’ Lemma)

• Spoiler #2: The model selection step in Alternative 2 may be critical
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Data D := {z(k) := [u(k); y(k)] : k = 1, .., Ns} measured historical data, possibly collected in closed-loop

GENERAL FORMULATION

Assumptions:

• Model ✓ = {�k, k; k = 1, ..,1} 2 M (unknown, possibly infinite dimensional)
• Prior distribution ✓ ⇠ p(✓)

Given (at any “present” time t)

• zini := {u(s), y(s); s < t}: initial conditions
• D: I/O data from the system
• uf : future control inputs (optimization variables)
• U , Y: constraint sets
• L(✓, uf , zini): loss function

Find Optimal uf such that

1. E[L(✓, uf , zini)|D] is minimized
2. Constraints are satisfied (possibly probabilistically)

what do we need?

•

E[L(✓, uf , zini)|D] ( p(✓|D)

QUESTION: Is this system identification?

3 Introduction

Direct data-driven control refers to the science of learning feedback controllers from data, without first undertaking
a full modeling study of the plant to control [16]. Such a direct mapping of data onto the control action is indeed
advisable in real-world problems, as modeling usually takes about 75% of the time devoted to a control project
[17], and accurate modeling for control requires significant time and several (costly) technical expertises, e.g., in the
process domain and in the statistical tools for system identification. Additionally, accurate modeling may go well
beyond what is strictly necessary for control purposes only, since often times rather limited knowledge of the system
dynamics may be required to achieve the desired control objectives [21].

Early attempts in this direction date back to 1942, with the first studies by Ziegler and Nichols about PID auto-
tuning [30]. More sophisticated, optimization based, approaches have been derived since then for fixed-order controller
tuning, leading to a portfolio of techniques suitable for di↵erent problem formulations, see, e.g., [14,6,15,22]. However,
it is only recently that, with the availability of large datasets and unparalleled computing power, such a paradigm
shift in control design could be extended to more complex control architectures. For instance in the deterministic
setting, by relying on the so-called “fundamental lemma” [28], model equations can be replaced by suitable data-based
constraints 1 in the formulation of a Model Predictive Control (MPC) schemes, as discussed e.g. in [11] or [5]. Such
a data-based framework may lead to di↵erent performance than traditional model-based MPC as it shows unique
features. For instance, the sub-optimality gap measuring the control performance with respect to the optimal model-
based control (namely, model-based control using the real model of the system) vanishes with the size of the dataset.
Moreover, model-free predictive control may indirectly address the bias/variance trade-o↵ in a more e�cient manner;

1
Such constraints can also be seen as an implicit, nonparametric, mapping of the input/output relationships. According to

this interpretation, some researchers legitimately prefer to denote the strategies described herein as “indirect”. For this reason,

we will simply talk about data-driven predictive control from now on.
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Note that, the solution û
?
f of (P1) is a measurable func-

tion of the data D, whereas u?
f in (5) is a deterministic

quantity.
Remark 1 (Alternative formulations) Based on

the conditional probability in (11) di↵erent notions of

optimality for control can be considered, leading to al-

ternative reformulations of the design problem in (5). A
first possibility would be to minimize the so-called Value

at Risk (VaR) [] for a given confidence level ↵. This

would result in the following problem:

û
?
f := argmin

uf2Uf ,`
`

s.t. P[Lt(uf ) > `|D] = ↵.

Alternatively, a more cautious approach would be to op-

timize the so-called Conditional Value at Risk (CVaR [],

i.e., to solve

û
?
f := argmin

uf2Uf ,`
E[Lt(uf )|Lt(uf ) > `,D]

s.t. P[Lt(uf ) > `|D] = ↵.

(11)

In this case, one is thus interested not only in bounding

the probability of losses exceeding a certain threshold (as

for the VaR), but also in limiting the expected loss in case

such threshold is exceeded. While we defer an analysis

of the implications that such changes in the notion of

optimality have on the final closed-loop performance to

future work, we wish to stress that the considered problem

(P1) corresponds to (11) for ↵ = 1.

3 High level assumptions on the predictor

Let us initially consider the one-step predictor

ŷ(t|t� 1) := E[y(t)|z�t ,M] (12)

where z�t ={z(t� k)}k2N denotes the information avail-
able up time t. In this work, we assume this predictor
to be linear and have a `1 (i.e., BIBO) stable impulse
response, namely

ŷ(t|t� 1) =
+1X

k=1

�kz(t� k),

=
+1X

k=1

�
y
ky(t� k) + �

u
ku(t� k), (13a)

with n
�k :=

h
�
y
k �

u
k

io

k2N
2 `1. (13b)

In addition, we suppose that the one-step prediction er-
ror e(t) := y(t) � ŷ(t|t � 1) is a martingale di↵erence

with constant conditional variance �2
Ip 2 Rp

+, namely

E[e(t)|z�t ] = 0 (14a)

V ar[e(t)|z�t ] = V ar[e(t)] = �
2
Ip, (14b)

conditionally on the joint input-output past data z
�
t ,

thus implying that y(t) admits an infinite order ARX

representation with BIBO-stable impulse response.
Remark 2 (On the role of (13)) Note that the repre-

sentation in (13) should not be regarded as a tentative

parameterization of the predictor via the (infinite dimen-

sional) set of “parameters” {�k}k2N, but rather as a

general representation encompassing all reasonable lin-

ear and bounded maps between past inputs/outputs and

ŷ(t|t � 1). Indeed, our assumptions are rather mild and

not limiting, as the considered class of predictors spans

all linear (and even infinite dimensional) and bounded

operators mapping past data into the one-step-ahead out-

put prediction.

As we aim at solving (P1) in a model-free fashion, we
wish not to impose further restrictions on the predictor
apart from the (mild) assumptions introduced above. To
achieve this goal, we model {�k}k2N as the zero-mean,
Gaussian process

{�u
k}k2N ⇠ GP(0,K�), {�y

k}k2N ⇠ GP(0,K�)

{�u
k}k2N ? {�y

k}k2N,
(15)

with covariance K� := �K, and where kernel K only
has to result in `1-stable realizations of this prior. We
then let the scaling factor go to infinity, i.e., � ! 1,
to recover a fully non-informative prior, thus complying
with the considered framework.
Remark 3 (Model-based vs model-free) In gen-

eral terms, a “model-based” approach postulates more

specific forms of the predictor, further restricting its

functional form. A notable example is the “classical”

route followed in parametric system identification, where

one imposes {�k}k2N to be the impulse response of an

n�th order linear state space model with n is fixed [].

Since {�k}k2N 2 `1, it is additionally possible to select
a data driven truncation rule ⇢̂N 2 N such that, for
any length N dataset D , it is possible to truncate the
predictor in (13) as

ŷ(t|t� 1)
·
=

⇢̂NX

k=1

�
y
ky(t� k) + �

u
ku(t� k), (16)

with a negligible (i.e. o(1/
p
N)) approximation error,

see e.g [2,1,9]. Based on this truncated representation,
we can now formally characterize the optimal multi-step
predictor as follows.
Proposition 1 Recalling the definitions of uf , yf , and

zini in (6)-(9), the optimal T -step-ahead output predictor
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QUESTION: is this system identification?

Remark: Sample Complexity Model Class >> Ndata = |D|

Long story short (two extreme alternatives)

1. Model free/nonparametric: Constrain M so that sample complexity ' Ndata = |D|

(LONG ARX MODEL/Nonparametric stable model)

2. Model based: Constrain M to be of “low (sample) complexity”

• Spoiler #1: Alternative 1 is basically the route followed by “modern”
data-driven MPC approaches (based on Willems’ Lemma)

• Spoiler #2: The model selection step in Alternative 2 may be critical
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y(t) = ŷ(t|t� 1) + e(t)
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NON INFORMATIVE BAYESIAN 
FORMULATION

Note that, the solution û
?
f of (P1) is a measurable func-

tion of the data D, whereas u?
f in (5) is a deterministic

quantity.
Remark 1 (Alternative formulations) Based on

the conditional probability in (11) di↵erent notions of

optimality for control can be considered, leading to al-

ternative reformulations of the design problem in (5). A
first possibility would be to minimize the so-called Value

at Risk (VaR) [] for a given confidence level ↵. This

would result in the following problem:

û
?
f := argmin

uf2Uf ,`
`

s.t. P[Lt(uf ) > `|D] = ↵.

Alternatively, a more cautious approach would be to op-

timize the so-called Conditional Value at Risk (CVaR [],

i.e., to solve

û
?
f := argmin

uf2Uf ,`
E[Lt(uf )|Lt(uf ) > `,D]

s.t. P[Lt(uf ) > `|D] = ↵.

(11)

In this case, one is thus interested not only in bounding

the probability of losses exceeding a certain threshold (as

for the VaR), but also in limiting the expected loss in case

such threshold is exceeded. While we defer an analysis

of the implications that such changes in the notion of

optimality have on the final closed-loop performance to

future work, we wish to stress that the considered problem

(P1) corresponds to (11) for ↵ = 1.

3 High level assumptions on the predictor

Let us initially consider the one-step predictor

ŷ(t|t� 1) := E[y(t)|z�t ,M] (12)

where z�t ={z(t� k)}k2N denotes the information avail-
able up time t. In this work, we assume this predictor
to be linear and have a `1 (i.e., BIBO) stable impulse
response, namely

ŷ(t|t� 1) =
+1X

k=1

�kz(t� k),

=
+1X

k=1

�
y
ky(t� k) + �

u
ku(t� k), (13a)

with n
�k :=

h
�
y
k �

u
k

io

k2N
2 `1. (13b)

In addition, we suppose that the one-step prediction er-
ror e(t) := y(t) � ŷ(t|t � 1) is a martingale di↵erence

with constant conditional variance �2
Ip 2 Rp

+, namely

E[e(t)|z�t ] = 0 (14a)

V ar[e(t)|z�t ] = V ar[e(t)] = �
2
Ip, (14b)

conditionally on the joint input-output past data z
�
t ,

thus implying that y(t) admits an infinite order ARX

representation with BIBO-stable impulse response.
Remark 2 (On the role of (13)) Note that the repre-

sentation in (13) should not be regarded as a tentative

parameterization of the predictor via the (infinite dimen-

sional) set of “parameters” {�k}k2N, but rather as a

general representation encompassing all reasonable lin-

ear and bounded maps between past inputs/outputs and

ŷ(t|t � 1). Indeed, our assumptions are rather mild and

not limiting, as the considered class of predictors spans

all linear (and even infinite dimensional) and bounded

operators mapping past data into the one-step-ahead out-

put prediction.

As we aim at solving (P1) in a model-free fashion, we
wish not to impose further restrictions on the predictor
apart from the (mild) assumptions introduced above. To
achieve this goal, we model {�k}k2N as the zero-mean,
Gaussian process

{�u
k}k2N ⇠ GP(0,K�), {�y

k}k2N ⇠ GP(0,K�)

{�u
k}k2N ? {�y

k}k2N,
(15)

with covariance K� := �K, and where kernel K only
has to result in `1-stable realizations of this prior. We
then let the scaling factor go to infinity, i.e., � ! 1,
to recover a fully non-informative prior, thus complying
with the considered framework.
Remark 3 (Model-based vs model-free) In gen-

eral terms, a “model-based” approach postulates more

specific forms of the predictor, further restricting its

functional form. A notable example is the “classical”

route followed in parametric system identification, where

one imposes {�k}k2N to be the impulse response of an

n�th order linear state space model with n is fixed [].

Since {�k}k2N 2 `1, it is additionally possible to select
a data driven truncation rule ⇢̂N 2 N such that, for
any length N dataset D , it is possible to truncate the
predictor in (13) as

ŷ(t|t� 1)
·
=

⇢̂NX

k=1

�
y
ky(t� k) + �

u
ku(t� k), (16)

with a negligible (i.e. o(1/
p
N)) approximation error,

see e.g [2,1,9]. Based on this truncated representation,
we can now formally characterize the optimal multi-step
predictor as follows.
Proposition 1 Recalling the definitions of uf , yf , and

zini in (6)-(9), the optimal T -step-ahead output predictor
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Alternatively, a more cautious approach would be to op-

timize the so-called Conditional Value at Risk (CVaR [],

i.e., to solve
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f := argmin

uf2Uf ,`
E[Lt(uf )|Lt(uf ) > `,D]

s.t. P[Lt(uf ) > `|D] = ↵.
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In this case, one is thus interested not only in bounding

the probability of losses exceeding a certain threshold (as

for the VaR), but also in limiting the expected loss in case

such threshold is exceeded. While we defer an analysis

of the implications that such changes in the notion of

optimality have on the final closed-loop performance to

future work, we wish to stress that the considered problem

(P1) corresponds to (11) for ↵ = 1.

3 High level assumptions on the predictor

Let us initially consider the one-step predictor

ŷ(t|t� 1) := E[y(t)|z�t ,M] (12)

where z�t ={z(t� k)}k2N denotes the information avail-
able up time t. In this work, we assume this predictor
to be linear and have a `1 (i.e., BIBO) stable impulse
response, namely

ŷ(t|t� 1) =
+1X

k=1

�kz(t� k),

=
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ky(t� k) + �
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In addition, we suppose that the one-step prediction er-
ror e(t) := y(t) � ŷ(t|t � 1) is a martingale di↵erence

with constant conditional variance �2
Ip 2 Rp

+, namely

E[e(t)|z�t ] = 0 (14a)

V ar[e(t)|z�t ] = V ar[e(t)] = �
2
Ip, (14b)

conditionally on the joint input-output past data z
�
t ,

thus implying that y(t) admits an infinite order ARX

representation with BIBO-stable impulse response.
Remark 2 (On the role of (13)) Note that the repre-

sentation in (13) should not be regarded as a tentative

parameterization of the predictor via the (infinite dimen-

sional) set of “parameters” {�k}k2N, but rather as a

general representation encompassing all reasonable lin-

ear and bounded maps between past inputs/outputs and

ŷ(t|t � 1). Indeed, our assumptions are rather mild and

not limiting, as the considered class of predictors spans

all linear (and even infinite dimensional) and bounded

operators mapping past data into the one-step-ahead out-

put prediction.

As we aim at solving (P1) in a model-free fashion, we
wish not to impose further restrictions on the predictor
apart from the (mild) assumptions introduced above. To
achieve this goal, we model {�k}k2N as the zero-mean,
Gaussian process

{�u
k}k2N ⇠ GP(0,K�), {�y

k}k2N ⇠ GP(0,K�)

{�u
k}k2N ? {�y

k}k2N,
(15)

with covariance K� := �K, and where kernel K only
has to result in `1-stable realizations of this prior. We
then let the scaling factor go to infinity, i.e., � ! 1,
to recover a fully non-informative prior, thus complying
with the considered framework.
Remark 3 (Model-based vs model-free) In gen-

eral terms, a “model-based” approach postulates more

specific forms of the predictor, further restricting its

functional form. A notable example is the “classical”

route followed in parametric system identification, where

one imposes {�k}k2N to be the impulse response of an

n�th order linear state space model with n is fixed [].

Since {�k}k2N 2 `1, it is additionally possible to select
a data driven truncation rule ⇢̂N 2 N such that, for
any length N dataset D , it is possible to truncate the
predictor in (13) as

ŷ(t|t� 1)
·
=

⇢̂NX
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y
ky(t� k) + �

u
ku(t� k), (16)

with a negligible (i.e. o(1/
p
N)) approximation error,

see e.g [2,1,9]. Based on this truncated representation,
we can now formally characterize the optimal multi-step
predictor as follows.
Proposition 1 Recalling the definitions of uf , yf , and

zini in (6)-(9), the optimal T -step-ahead output predictor
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ŷ(t|t� 1) =
+1X

k=1

�kz(t� k),

=
+1X

k=1

�
y
ky(t� k) + �

u
ku(t� k), (13a)

with n
�k :=

h
�
y
k �

u
k

io

k2N
2 `1. (13b)

In addition, we suppose that the one-step prediction er-
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û
?
f := argmin

uf2Uf ,`
`

s.t. P[Lt(uf ) > `|D] = ↵.

Alternatively, a more cautious approach would be to op-

timize the so-called Conditional Value at Risk (CVaR [],

i.e., to solve

û
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Proof The proof of (17a) follows from the fact that, the

components ŷ(t+ h|t� 1) of f(uf , zini)
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can be recursively obtained, for h 2 {1, .., T � 1}, from
the equation:

ŷ(t+ h|t� 1) =
hX

k=1

�
y
kŷ(t+ h� k|t� 1)+

+
⇢̂NX

k=h+1
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ky(t+ h� k)+
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stacking all these equations for h 2 {0, .., T � 1} and ex-

ploiting the definitions (17c), (17a) follows. Concerning
(17b), it su�ces to observe that

yf
·
=�P zini + �yyf + �uuf + ef

from which

(IpT � �y)yf
·
=�yyf + �uuf + ef

and, using (17a), (17b) follows immediately.

Remark 4 (On the choice of ⇢̂N) Although the

choice of ⇢̂N is not uniform over the parameter space,

⇢̂No can always be tuned in a data-driven fashion as

discussed in [1].

Remark 5 (Truncation in a Bayesian setup) For

finite � in (15), the truncation to ⇢ introduced in (16)
can actually be avoided, since posterior mean and vari-

ances are well-defined (i.e., bounded) even for ⇢ ! 1.

We leave the analysis of this scenario to future work.

4 From model-based to data-driven control

Equation (17b) shows that the model based T -
step-ahead prediction error covariance is given by
�
2(IpT ��y)�1(IpT ��y)�>. When defining the track-

ing cost, we thus account for this by normalizing the
tracking error by the (normalized) inverse square root
error covariance

W := IpT � �y (18)

leading to the quadratic objective function:

Lt(uf ) = kW (yr � f(uf , zini))k2Q + kur � ufk2R, (19)

where of course the weightsQ andR can be freely chosen
by the control designer to achieve specific goals.

In order to streamline notation we define the di↵erence
between the future references and the predicted outputs
as

�y(uf )=yr � f(uf , zini). (20)

so that the cost (19) can be written as

Lt(uf ) = kW�yk2Q+ kur � ufk2R. (21)

This alternative formulation allows us to link Lt(uf ) to
the characterization of the predictor provided in (17a)
and, thus, to express the conditional loss in (P1) as for-
malized in the following Proposition.
Proposition 2 Let the predictor f(uf , zini) featured in

(19) be described as in (17a), and define

�̄P := E[�P |D], �̄u := E[�u|D], W̄ = E[W |D]. (22)

Then, the data-conditioned, objective function in (P1)
is given by

E[Lt(uf )|D] = J(uf ) + r(uf ), (23a)
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components ŷ(t+ h|t� 1) of f(uf , zini)

f(uf , zini) =

2

666664
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kŷ(t+ h� k|t� 1)+

+
⇢̂NX

k=h+1

�
y
ky(t+ h� k)+

+
⇢̂NX

k=1

�
u
ku(t+ h� k)

stacking all these equations for h 2 {0, .., T � 1} and ex-

ploiting the definitions (17c), (17a) follows. Concerning
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from which
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Remark 4 (On the choice of ⇢̂N) Although the
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discussed in [1].

Remark 5 (Truncation in a Bayesian setup) For

finite � in (15), the truncation to ⇢ introduced in (16)
can actually be avoided, since posterior mean and vari-

ances are well-defined (i.e., bounded) even for ⇢ ! 1.

We leave the analysis of this scenario to future work.
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Equation (17b) shows that the model based T -
step-ahead prediction error covariance is given by
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2(IpT ��y)�1(IpT ��y)�>. When defining the track-

ing cost, we thus account for this by normalizing the
tracking error by the (normalized) inverse square root
error covariance
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leading to the quadratic objective function:
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where of course the weightsQ andR can be freely chosen
by the control designer to achieve specific goals.

In order to streamline notation we define the di↵erence
between the future references and the predicted outputs
as
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so that the cost (19) can be written as
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and, thus, to express the conditional loss in (P1) as for-
malized in the following Proposition.
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(17b), it su�ces to observe that

yf
·
=�P zini + �yyf + �uuf + ef

from which

(IpT � �y)yf
·
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and, using (17a), (17b) follows immediately.
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choice of ⇢̂N is not uniform over the parameter space,

⇢̂No can always be tuned in a data-driven fashion as

discussed in [1].

Remark 5 (Truncation in a Bayesian setup) For

finite � in (15), the truncation to ⇢ introduced in (16)
can actually be avoided, since posterior mean and vari-

ances are well-defined (i.e., bounded) even for ⇢ ! 1.

We leave the analysis of this scenario to future work.
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Equation (17b) shows that the model based T -
step-ahead prediction error covariance is given by
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tracking error by the (normalized) inverse square root
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W := IpT � �y (18)

leading to the quadratic objective function:

Lt(uf ) = kW (yr � f(uf , zini))k2Q + kur � ufk2R, (19)

where of course the weightsQ andR can be freely chosen
by the control designer to achieve specific goals.

In order to streamline notation we define the di↵erence
between the future references and the predicted outputs
as

�y(uf )=yr � f(uf , zini). (20)

so that the cost (19) can be written as
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This alternative formulation allows us to link Lt(uf ) to
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and, thus, to express the conditional loss in (P1) as for-
malized in the following Proposition.
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ŷ(t|t� 1)
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ploiting the definitions (17c), (17a) follows. Concerning
(17b), it su�ces to observe that
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·
=�P zini + �yyf + �uuf + ef

from which

(IpT � �y)yf
·
=�yyf + �uuf + ef

and, using (17a), (17b) follows immediately.

Remark 4 (On the choice of ⇢̂N) Although the

choice of ⇢̂N is not uniform over the parameter space,

⇢̂No can always be tuned in a data-driven fashion as

discussed in [1].

Remark 5 (Truncation in a Bayesian setup) For

finite � in (15), the truncation to ⇢ introduced in (16)
can actually be avoided, since posterior mean and vari-

ances are well-defined (i.e., bounded) even for ⇢ ! 1.

We leave the analysis of this scenario to future work.

4 From model-based to data-driven control

Equation (17b) shows that the model based T -
step-ahead prediction error covariance is given by
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2(IpT ��y)�1(IpT ��y)�>. When defining the track-

ing cost, we thus account for this by normalizing the
tracking error by the (normalized) inverse square root
error covariance

W := IpT � �y (18)

leading to the quadratic objective function:

Lt(uf ) = kW (yr � f(uf , zini))k2Q + kur � ufk2R, (19)

where of course the weightsQ andR can be freely chosen
by the control designer to achieve specific goals.

In order to streamline notation we define the di↵erence
between the future references and the predicted outputs
as

�y(uf )=yr � f(uf , zini). (20)

so that the cost (19) can be written as

Lt(uf ) = kW�yk2Q+ kur � ufk2R. (21)

This alternative formulation allows us to link Lt(uf ) to
the characterization of the predictor provided in (17a)
and, thus, to express the conditional loss in (P1) as for-
malized in the following Proposition.
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Proof The proof of (17a) follows from the fact that, the

components ŷ(t+ h|t� 1) of f(uf , zini)
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can be recursively obtained, for h 2 {1, .., T � 1}, from
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+
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stacking all these equations for h 2 {0, .., T � 1} and ex-

ploiting the definitions (17c), (17a) follows. Concerning
(17b), it su�ces to observe that

yf
·
=�P zini + �yyf + �uuf + ef

from which

(IpT � �y)yf
·
=�yyf + �uuf + ef

and, using (17a), (17b) follows immediately.

Remark 4 (On the choice of ⇢̂N) Although the

choice of ⇢̂N is not uniform over the parameter space,

⇢̂No can always be tuned in a data-driven fashion as

discussed in [1].

Remark 5 (Truncation in a Bayesian setup) For

finite � in (15), the truncation to ⇢ introduced in (16)
can actually be avoided, since posterior mean and vari-

ances are well-defined (i.e., bounded) even for ⇢ ! 1.

We leave the analysis of this scenario to future work.

4 From model-based to data-driven control

Equation (17b) shows that the model based T -
step-ahead prediction error covariance is given by
�
2(IpT ��y)�1(IpT ��y)�>. When defining the track-

ing cost, we thus account for this by normalizing the
tracking error by the (normalized) inverse square root
error covariance

W := IpT � �y (18)

leading to the quadratic objective function:

Lt(uf ) = kW (yr � f(uf , zini))k2Q + kur � ufk2R, (19)

where of course the weightsQ andR can be freely chosen
by the control designer to achieve specific goals.

In order to streamline notation we define the di↵erence
between the future references and the predicted outputs
as

�y(uf )=yr � f(uf , zini). (20)

so that the cost (19) can be written as

Lt(uf ) = kW�yk2Q+ kur � ufk2R. (21)

This alternative formulation allows us to link Lt(uf ) to
the characterization of the predictor provided in (17a)
and, thus, to express the conditional loss in (P1) as for-
malized in the following Proposition.
Proposition 2 Let the predictor f(uf , zini) featured in

(19) be described as in (17a), and define

�̄P := E[�P |D], �̄u := E[�u|D], W̄ = E[W |D]. (22)

Then, the data-conditioned, objective function in (P1)
is given by

E[Lt(uf )|D] = J(uf ) + r(uf ), (23a)
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• Length ⇢ can be estimated from data

• There is an approximately su�cient finite dimensional statistic
(= sample moments up to lag ⇢)

3. To be statistically e�cient the decision (optimal control design) should be function of D
through a (minimal !?!?) su�cient statistic T := T (D).

Program for the second part:

1. Introduce Data Driven Predictive Control schemes (DeePC, � �DDPC etc..)
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Proof The proof of (17a) follows from the fact that, the

components ŷ(t+ h|t� 1) of f(uf , zini)
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stacking all these equations for h 2 {0, .., T � 1} and ex-

ploiting the definitions (17c), (17a) follows. Concerning
(17b), it su�ces to observe that

yf
·
=�P zini + �yyf + �uuf + ef

from which

(IpT � �y)yf
·
=�yyf + �uuf + ef

and, using (17a), (17b) follows immediately.

Remark 4 (On the choice of ⇢̂N) Although the

choice of ⇢̂N is not uniform over the parameter space,

⇢̂No can always be tuned in a data-driven fashion as

discussed in [1].

Remark 5 (Truncation in a Bayesian setup) For

finite � in (15), the truncation to ⇢ introduced in (16)
can actually be avoided, since posterior mean and vari-

ances are well-defined (i.e., bounded) even for ⇢ ! 1.

We leave the analysis of this scenario to future work.

4 From model-based to data-driven control

Equation (17b) shows that the model based T -
step-ahead prediction error covariance is given by
�
2(IpT ��y)�1(IpT ��y)�>. When defining the track-

ing cost, we thus account for this by normalizing the
tracking error by the (normalized) inverse square root
error covariance

W := IpT � �y (18)

leading to the quadratic objective function:

Lt(uf ) = kW (yr � f(uf , zini))k2Q + kur � ufk2R, (19)

where of course the weightsQ andR can be freely chosen
by the control designer to achieve specific goals.

In order to streamline notation we define the di↵erence
between the future references and the predicted outputs
as

�y(uf )=yr � f(uf , zini). (20)

so that the cost (19) can be written as

Lt(uf ) = kW�yk2Q+ kur � ufk2R. (21)

This alternative formulation allows us to link Lt(uf ) to
the characterization of the predictor provided in (17a)
and, thus, to express the conditional loss in (P1) as for-
malized in the following Proposition.
Proposition 2 Let the predictor f(uf , zini) featured in

(19) be described as in (17a), and define

�̄P := E[�P |D], �̄u := E[�u|D], W̄ = E[W |D]. (22)

Then, the data-conditioned, objective function in (P1)
is given by

E[Lt(uf )|D] = J(uf ) + r(uf ), (23a)
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Proof The proof of (17a) follows from the fact that, the

components ŷ(t+ h|t� 1) of f(uf , zini)
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can be recursively obtained, for h 2 {1, .., T � 1}, from
the equation:

ŷ(t+ h|t� 1) =
hX
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kŷ(t+ h� k|t� 1)+

+
⇢̂NX

k=h+1

�
y
ky(t+ h� k)+

+
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ku(t+ h� k)

stacking all these equations for h 2 {0, .., T � 1} and ex-

ploiting the definitions (17c), (17a) follows. Concerning
(17b), it su�ces to observe that

yf
·
=�P zini + �yyf + �uuf + ef

from which

(IpT � �y)yf
·
=�yyf + �uuf + ef

and, using (17a), (17b) follows immediately.

Remark 4 (On the choice of ⇢̂N) Although the

choice of ⇢̂N is not uniform over the parameter space,

⇢̂No can always be tuned in a data-driven fashion as

discussed in [1].

Remark 5 (Truncation in a Bayesian setup) For

finite � in (15), the truncation to ⇢ introduced in (16)
can actually be avoided, since posterior mean and vari-

ances are well-defined (i.e., bounded) even for ⇢ ! 1.

We leave the analysis of this scenario to future work.

4 From model-based to data-driven control

Equation (17b) shows that the model based T -
step-ahead prediction error covariance is given by
�
2(IpT ��y)�1(IpT ��y)�>. When defining the track-

ing cost, we thus account for this by normalizing the
tracking error by the (normalized) inverse square root
error covariance

W := IpT � �y (18)

leading to the quadratic objective function:

Lt(uf ) = kW (yr � f(uf , zini))k2Q + kur � ufk2R, (19)

where of course the weightsQ andR can be freely chosen
by the control designer to achieve specific goals.

In order to streamline notation we define the di↵erence
between the future references and the predicted outputs
as

�y(uf )=yr � f(uf , zini). (20)

so that the cost (19) can be written as

Lt(uf ) = kW�yk2Q+ kur � ufk2R. (21)

This alternative formulation allows us to link Lt(uf ) to
the characterization of the predictor provided in (17a)
and, thus, to express the conditional loss in (P1) as for-
malized in the following Proposition.
Proposition 2 Let the predictor f(uf , zini) featured in

(19) be described as in (17a), and define

�̄P := E[�P |D], �̄u := E[�u|D], W̄ = E[W |D]. (22)

Then, the data-conditioned, objective function in (P1)
is given by

E[Lt(uf )|D] = J(uf ) + r(uf ), (23a)

4

Therefore, we can now cast our data-driven control prob-
lem as follows

û
?
f := argmin

uf2Uf

J(uf )+r(uf ) (P2)

where

J(uf ) := kW�yk2Q + kur � ufk2R
=kW̄yr�(�̄P zini+�̄uuf )k2Q+kur�ufk2R, (24)

r(uf ) := Tr(QV ar[W�y|D]), (25)

which can be respectively regarded as the “certainty equiv-
alence quadratic” loss, and a regularization that controls
the e↵ects of uncertainties on the future inputs.
Remark 6 The cost in (P2) still depends on the choice
of the weightings Q and R and this freedom can be ex-
ploited to recapture specific problems encountered in the
literature. For instance, by choosing Q := qW̄

�>
W̄

�1

and R = rImT we obtain

J̄(uf ) := kW�yk2Q + kur � ufk2R
= qkyr�W̄

�1(�̄P zini+�̄uuf )k2+rkur�ufk2,
(26)

r̄(uf ) := Tr(qW̄�>
W̄

�1
V ar[W�y|D]), (27)

so that J̄(uf ) is the control cost in [11,8] and r̄(uf )is the
corresponding optimal regularizer.

5 Predictive control under non-informative pri-
ors

At this stage, we are left to explicitly show the depen-
dence of (P2) on the available data based on the chosen
uninformative prior on the predictor (15).

To this end, we firstly introduce the vector ✓ 2 R(m+p)T

stacking the parameters {�u
k ,�

y
k}k2{1,...,T}, comprising

all information needed to characterize the predictor in
(17a). Accordingly, note that W�y in (21) can be recast
as

W�y(uf ) :=Wyr�Wf(uf , zini)=(Mr�Mini�M(uf ))✓,
(28a)

where Mr,Mini,M(uf ) 2 RpT⇥(m+p)T are linear func-
tions of the output reference, zini and the future inputs,
satisfying the following:

Wyr = Mr✓, Wf(zini, uf )
·
=Mini✓ +M(uf )✓, (28b)

and we keep the explicit dependence of M(uf ) on future
controls, as uf is our optimization variable. Moreover,
also the elements of W , �P and �u become selections of
the components of ✓. Therefore, writing W̄ , �̄P and �̄u

simply implies that the true, yet unknown, entries of ✓

on which they depend are replaced with the corresponding
elements of

✓̂ := E[✓|D]. (29)

In addition to this conditional mean, let us introduce the
conditional variance

⌃✓ := V ar[✓|D], (30)

along with the data matrix of “past” inputs/outputs

ZP := Z[1,⇢],NH
, (31)

and the output data matrix

Y⇢+1 := Y[⇢+1,⇢+1],NH
, (32)

with NH = N � ⇢.

Given these ingredients, we are now ready to state the
main result of the paper.
Theorem 1 Under the Gaussian prior in (15), for � !
1 we have that

✓̂ = Y⇢+1Z
>
P (ZPZ

>
P )

�1
, (33)

⌃✓ = �
2(E

⇥
ZPZ

>
P

⇤
)�1 + o(1/N). (34)

Then, for this uninformative prior, the cost in (26) and
the regularizer in (27) respectively become: Perche qui
spuntano gli apici d? non dovrebbero essere tutti sem-
plicemente dei bar?Li avevo usati per far capire che questi
sono in valori ottenuti buttando e↵ettuivamente dentro
le matrici con bar i dati sulla base di (33) e (34). Sec-
ondo me chiariva, ma se ti sembra che crei confusione
ritorniamo a tutti i bar.

J
d(uf ) :=kyr� d

P zini+ 
d
uufk2Q+kur�ufk2R, (35)

r
d(uf ) :=Tr(QWd(M0�M(uf ))⌃✓(M0�M(uf ))

>), (36)

where

 d
P =

�
W

d
��1
�d

P ,  d
u =

�
W

d
��1
�d

u

QWd = q
�
W

d
��> �

W
d
��1

and M0 = Mr � Mini, with Mr and Mini defined in
(28b), while W

d, �d
P and �d

u are obtained by filling the
matrices �y, �P and �u in (17c) with the corresponding

estimated entries obtained from ✓̂ in (33).
Proof in questa proof si usa (30)? Altrimenti non è
chiaro dove serve... non serve mai purche sia positive def-
inite...allora io la leverei...e specificherei il requirement
di positive definiteness dopo la (15). Sei d’accordo?

This result allows us to formulate the final Bayesian data-
driven predictive controlOnestamete non userei la parola
Bayesian...ok, se preferisci rimetto il nome che gli avevi
dato te...
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f(uf , zini) satisfies

(IpT � �y)f(uf , zini)
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= �P zini + �uuf , (17a)

and
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(17c)
Proof The proof of (17a) follows from the fact that, the
components ŷ(t+ h|t� 1) of f(uf , zini)

f(uf , zini) =

2

666664

ŷ(t|t� 1)

ŷ(t+ 1|t� 1)
...

ŷ(t+ T � 1|t� 1)

3

777775

can be recursively obtained, for h 2 {1, .., T � 1}, from
the equation:

ŷ(t+ h|t� 1) =
hX

k=1

�
y
kŷ(t+ h� k|t� 1)+

+
⇢̂NX

k=h+1

�
y
ky(t+ h� k)+

+
⇢̂NX

k=1

�
u
ku(t+ h� k)

stacking all these equations for h 2 {0, .., T � 1} and ex-
ploiting the definitions (17c), (17a) follows. Concerning
(17b), it su�ces to observe that

yf
·
=�P zini + �yyf + �uuf + ef

from which

(IpT � �y)yf
·
=�yyf + �uuf + ef

and, using (17a), (17b) follows immediately.
Remark 4 (On the choice of ⇢̂N) Although the
choice of ⇢̂N is not uniform over the parameter space,
⇢̂No can always be tuned in a data-driven fashion as
discussed in [1].
Remark 5 (Truncation in a Bayesian setup) For
finite � in (15), the truncation to ⇢ introduced in (16)
can actually be avoided, since posterior mean and vari-
ances are well-defined (i.e., bounded) even for ⇢ ! 1.
We leave the analysis of this scenario to future work.

4 From model-based to data-driven control

Equation (17b) shows that the model based T -
step-ahead prediction error covariance is given by
�
2(IpT ��y)�1(IpT ��y)�>. When defining the track-

ing cost, we thus account for this by normalizing the
tracking error by the (normalized) inverse square root
error covariance

W := IpT � �y (18)

leading to the quadratic objective function:

Lt(uf ) = kW (yr � f(uf , zini))k2Q + kur � ufk2R, (19)

where of course the weightsQ andR can be freely chosen
by the control designer to achieve specific goals.

In order to streamline notation we define the di↵erence
between the future references and the predicted outputs
as

�y(uf )=yr � f(uf , zini). (20)

so that the cost (19) can be written as

Lt(uf ) = kW�yk2Q+ kur � ufk2R. (21)

This alternative formulation allows us to link Lt(uf ) to
the characterization of the predictor provided in (17a)
and, thus, to express the conditional loss in (P1) as for-
malized in the following Proposition.
Proposition 2 Let the predictor f(uf , zini) featured in
(19) be described as in (17a), and define

�̄P := E[�P |D], �̄u := E[�u|D], W̄ = E[W |D]. (22)

Then, the data-conditioned, objective function in (P1)
is given by

E[Lt(uf )|D] = J(uf ) + r(uf ), (23a)

with
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stacking all these equations for h 2 {0, .., T � 1} and ex-
ploiting the definitions (17c), (17a) follows. Concerning
(17b), it su�ces to observe that

yf
·
=�P zini + �yyf + �uuf + ef

from which

(IpT � �y)yf
·
=�yyf + �uuf + ef

and, using (17a), (17b) follows immediately.
Remark 4 (On the choice of ⇢̂N) Although the
choice of ⇢̂N is not uniform over the parameter space,
⇢̂No can always be tuned in a data-driven fashion as
discussed in [1].
Remark 5 (Truncation in a Bayesian setup) For
finite � in (15), the truncation to ⇢ introduced in (16)
can actually be avoided, since posterior mean and vari-
ances are well-defined (i.e., bounded) even for ⇢ ! 1.
We leave the analysis of this scenario to future work.

4 From model-based to data-driven control

Equation (17b) shows that the model based T -
step-ahead prediction error covariance is given by
�
2(IpT ��y)�1(IpT ��y)�>. When defining the track-

ing cost, we thus account for this by normalizing the
tracking error by the (normalized) inverse square root
error covariance

W := IpT � �y (18)

leading to the quadratic objective function:

Lt(uf ) = kW (yr � f(uf , zini))k2Q + kur � ufk2R, (19)

where of course the weightsQ andR can be freely chosen
by the control designer to achieve specific goals.

In order to streamline notation we define the di↵erence
between the future references and the predicted outputs
as

�y(uf )=yr � f(uf , zini). (20)

so that the cost (19) can be written as

Lt(uf ) = kW�yk2Q+ kur � ufk2R. (21)

This alternative formulation allows us to link Lt(uf ) to
the characterization of the predictor provided in (17a)
and, thus, to express the conditional loss in (P1) as for-
malized in the following Proposition.
Proposition 2 Let the predictor f(uf , zini) featured in
(19) be described as in (17a), and define

�̄P := E[�P |D], �̄u := E[�u|D], W̄ = E[W |D]. (22)

Then, the data-conditioned, objective function in (P1)
is given by

E[Lt(uf )|D] = J(uf ) + r(uf ), (23a)

with

4

Certainty equivalence cost Regularization
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Note that, the solution û
?
f of (P1) is a measurable func-

tion of the data D, whereas u?
f in (5) is a deterministic

quantity.
Remark 1 (Alternative formulations) Based on

the conditional probability in (11) di↵erent notions of

optimality for control can be considered, leading to al-

ternative reformulations of the design problem in (5). A
first possibility would be to minimize the so-called Value

at Risk (VaR) [] for a given confidence level ↵. This

would result in the following problem:

û
?
f := argmin

uf2Uf ,`
`

s.t. P[Lt(uf ) > `|D] = ↵.

Alternatively, a more cautious approach would be to op-

timize the so-called Conditional Value at Risk (CVaR [],

i.e., to solve

û
?
f := argmin

uf2Uf ,`
E[Lt(uf )|Lt(uf ) > `,D]

s.t. P[Lt(uf ) > `|D] = ↵.

(11)

In this case, one is thus interested not only in bounding

the probability of losses exceeding a certain threshold (as

for the VaR), but also in limiting the expected loss in case

such threshold is exceeded. While we defer an analysis

of the implications that such changes in the notion of

optimality have on the final closed-loop performance to

future work, we wish to stress that the considered problem

(P1) corresponds to (11) for ↵ = 1.

3 High level assumptions on the predictor

Let us initially consider the one-step predictor

ŷ(t|t� 1) := E[y(t)|z�t ,M] (12)

where z�t ={z(t� k)}k2N denotes the information avail-
able up time t. In this work, we assume this predictor
to be linear and have a `1 (i.e., BIBO) stable impulse
response, namely

ŷ(t|t� 1) =
+1X

k=1

�kz(t� k),

=
+1X

k=1

�
y
ky(t� k) + �

u
ku(t� k), (13a)

with n
�k :=

h
�
y
k �

u
k

io

k2N
2 `1. (13b)

In addition, we suppose that the one-step prediction er-
ror e(t) := y(t) � ŷ(t|t � 1) is a martingale di↵erence

with constant conditional variance �2
Ip 2 Rp

+, namely

E[e(t)|z�t ] = 0 (14a)

V ar[e(t)|z�t ] = V ar[e(t)] = �
2
Ip, (14b)

conditionally on the joint input-output past data z
�
t ,

thus implying that y(t) admits an infinite order ARX

representation with BIBO-stable impulse response.
Remark 2 (On the role of (13)) Note that the repre-

sentation in (13) should not be regarded as a tentative

parameterization of the predictor via the (infinite dimen-

sional) set of “parameters” {�k}k2N, but rather as a

general representation encompassing all reasonable lin-

ear and bounded maps between past inputs/outputs and

ŷ(t|t � 1). Indeed, our assumptions are rather mild and

not limiting, as the considered class of predictors spans

all linear (and even infinite dimensional) and bounded

operators mapping past data into the one-step-ahead out-

put prediction.
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{�u
k}k2N ⇠ GP(0,K�), {�y

k}k2N ⇠ GP(0,K�)

{�u
k}k2N ? {�y

k}k2N,
(15)
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ŷ(t|t� 1)
·
=

⇢̂NX

k=1

�
y
ky(t� k) + �

u
ku(t� k), (16)

with a negligible (i.e. o(1/
p
N)) approximation error,
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( = NON INFORMATIVE PRIOR)
Therefore, we can now cast our data-driven control prob-
lem as follows

û
?
f := argmin

uf2Uf

J(uf )+r(uf ) (P2)

where

J(uf ) := kW�yk2Q + kur � ufk2R
=kW̄yr�(�̄P zini+�̄uuf )k2Q+kur�ufk2R, (24)

r(uf ) := Tr(QV ar[W�y|D]), (25)

which can be respectively regarded as the “certainty equiv-
alence quadratic” loss, and a regularization that controls
the e↵ects of uncertainties on the future inputs.
Remark 6 The cost in (P2) still depends on the choice
of the weightings Q and R and this freedom can be ex-
ploited to recapture specific problems encountered in the
literature. For instance, by choosing Q := qW̄

�>
W̄

�1

and R = rImT we obtain

J̄(uf ) := kW�yk2Q + kur � ufk2R
= qkyr�W̄

�1(�̄P zini+�̄uuf )k2+rkur�ufk2,
(26)

r̄(uf ) := Tr(qW̄�>
W̄

�1
V ar[W�y|D]), (27)

so that J̄(uf ) is the control cost in [11,8] and r̄(uf )is the
corresponding optimal regularizer.

5 Predictive control under non-informative pri-
ors

At this stage, we are left to explicitly show the depen-
dence of (P2) on the available data based on the chosen
uninformative prior on the predictor (15).

To this end, we firstly introduce the vector ✓ 2 R(m+p)T

stacking the parameters {�u
k ,�

y
k}k2{1,...,T}, comprising

all information needed to characterize the predictor in
(17a). Accordingly, note that W�y in (21) can be recast
as

W�y(uf ) :=Wyr�Wf(uf , zini)=(Mr�Mini�M(uf ))✓,
(28a)

where Mr,Mini,M(uf ) 2 RpT⇥(m+p)T are linear func-
tions of the output reference, zini and the future inputs,
satisfying the following:

Wyr = Mr✓, Wf(zini, uf )
·
=Mini✓ +M(uf )✓, (28b)

and we keep the explicit dependence of M(uf ) on future
controls, as uf is our optimization variable. Moreover,
also the elements of W , �P and �u become selections of
the components of ✓. Therefore, writing W̄ , �̄P and �̄u

simply implies that the true, yet unknown, entries of ✓

on which they depend are replaced with the corresponding
elements of

✓̂ := E[✓|D]. (29)

In addition to this conditional mean, let us introduce the
conditional variance

⌃✓ := V ar[✓|D], (30)

along with the data matrix of “past” inputs/outputs

ZP := Z[1,⇢],NH
, (31)

and the output data matrix

Y⇢+1 := Y[⇢+1,⇢+1],NH
, (32)

with NH = N � ⇢.

Given these ingredients, we are now ready to state the
main result of the paper.
Theorem 1 Under the Gaussian prior in (15), for � !
1 we have that

✓̂ = Y⇢+1Z
>
P (ZPZ

>
P )

�1
, (33)

⌃✓ = �
2(ZPZ

>
P )

�1
. (34)

Then, for this uninformative prior, the cost in (26) and
the regularizer in (27) respectively become: Perche qui
spuntano gli apici d? non dovrebbero essere tutti sem-
plicemente dei bar?Li avevo usati per far capire che questi
sono in valori ottenuti buttando e↵ettuivamente dentro
le matrici con bar i dati sulla base di (33) e (34). Sec-
ondo me chiariva, ma se ti sembra che crei confusione
ritorniamo a tutti i bar.

J
d(uf ) :=kyr� d

P zini+ 
d
uufk2Q+kur�ufk2R, (35)

r
d(uf ) :=Tr(QWd(M0�M(uf ))⌃✓(M0�M(uf ))

>), (36)

where

 d
P =

�
W

d
��1
�d

P ,  d
u =

�
W

d
��1
�d

u

QWd = q
�
W

d
��> �

W
d
��1

and M0 = Mr � Mini, with Mr and Mini defined in
(28b), while W

d, �d
P and �d

u are obtained by filling the
matrices �y, �P and �u in (17c) with the corresponding

estimated entries obtained from ✓̂ in (33).
Proof in questa proof si usa (30)? Altrimenti non è
chiaro dove serve... non serve mai purche sia positive def-
inite...allora io la leverei...e specificherei il requirement
di positive definiteness dopo la (15). Sei d’accordo?

This result allows us to formulate the final Bayesian data-
driven predictive controlOnestamete non userei la parola
Bayesian...ok, se preferisci rimetto il nome che gli avevi
dato te...
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chiaro dove serve... non serve mai purche sia positive def-
inite...allora io la leverei...e specificherei il requirement
di positive definiteness dopo la (15). Sei d’accordo?

This result allows us to formulate the final Bayesian data-
driven predictive controlOnestamete non userei la parola
Bayesian...ok, se preferisci rimetto il nome che gli avevi
dato te...

5

Usual Block Hankel Matrices 

W (yf � f(zini, uf )) = ef

Wf(uf , zini)
·
= �P zini + �uuf

✓ 2 Rp(m+p)⇢ defined stacking all the {�u

k
,�y

k
}k=1,..,⇢

When the training input is white

i.e. (sub)optimal regularization is the one used in �-DDPC with �2 = qpT�
2

N
, �3 = 0.

Proposition:

one to one correspondence between LQ decomposition in �-DDPC and
bank of ARX models
TWO QUESTIONS:

1. Do I need p(✓|D)?

... not really!

p(L|D) =

Z
p(L|✓)p(✓|D)d✓

2. Can I summarize data with a low dimensional statistic T := T (D)?

Yes if T is a su�cient for L, i.e. if

p(L|T ) =

Z
p(L|✓)p(✓|T )d✓ = p(L|D)

True if p(✓|T ) = p(✓|D)

Important Remarks:

1. There is no finite dimensional statistic unless the model is ARX, but....

2. Any model in M ' long arx (length ⇢ = number of block rows in Hankel data matrix)

• Length ⇢ can be estimated from data

• There is an approximately su�cient finite dimensional statistic
(= sample moments up to lag ⇢)

3. To be statistically e�cient the decision (optimal control design) should be function of D
through a (minimal !?!?) su�cient statistic T := T (D).

Important Remarks:

1. (Approx) Su�cient statistic for E[Lt(uf )|D}]:

T (D) :=
⇥
Y⇢+1Z

>

P
ZPZ

>

P

⇤

= sample moments up to lag ⇢

7

&.  p = 1 (for simplicty of exposition)



MAIN THEOREM 2

Note that, the solution û
?
f of (P1) is a measurable func-

tion of the data D, whereas u?
f in (5) is a deterministic

quantity.
Remark 1 (Alternative formulations) Based on

the conditional probability in (11) di↵erent notions of

optimality for control can be considered, leading to al-

ternative reformulations of the design problem in (5). A
first possibility would be to minimize the so-called Value

at Risk (VaR) [] for a given confidence level ↵. This

would result in the following problem:

û
?
f := argmin

uf2Uf ,`
`

s.t. P[Lt(uf ) > `|D] = ↵.

Alternatively, a more cautious approach would be to op-

timize the so-called Conditional Value at Risk (CVaR [],

i.e., to solve

û
?
f := argmin

uf2Uf ,`
E[Lt(uf )|Lt(uf ) > `,D]

s.t. P[Lt(uf ) > `|D] = ↵.

(11)

In this case, one is thus interested not only in bounding

the probability of losses exceeding a certain threshold (as

for the VaR), but also in limiting the expected loss in case

such threshold is exceeded. While we defer an analysis

of the implications that such changes in the notion of

optimality have on the final closed-loop performance to

future work, we wish to stress that the considered problem

(P1) corresponds to (11) for ↵ = 1.

3 High level assumptions on the predictor

Let us initially consider the one-step predictor

ŷ(t|t� 1) := E[y(t)|z�t ,M] (12)

where z�t ={z(t� k)}k2N denotes the information avail-
able up time t. In this work, we assume this predictor
to be linear and have a `1 (i.e., BIBO) stable impulse
response, namely

ŷ(t|t� 1) =
+1X

k=1

�kz(t� k),

=
+1X

k=1

�
y
ky(t� k) + �

u
ku(t� k), (13a)

with n
�k :=

h
�
y
k �

u
k

io

k2N
2 `1. (13b)

In addition, we suppose that the one-step prediction er-
ror e(t) := y(t) � ŷ(t|t � 1) is a martingale di↵erence

with constant conditional variance �2
Ip 2 Rp

+, namely

E[e(t)|z�t ] = 0 (14a)

V ar[e(t)|z�t ] = V ar[e(t)] = �
2
Ip, (14b)

conditionally on the joint input-output past data z
�
t ,

thus implying that y(t) admits an infinite order ARX

representation with BIBO-stable impulse response.
Remark 2 (On the role of (13)) Note that the repre-

sentation in (13) should not be regarded as a tentative

parameterization of the predictor via the (infinite dimen-

sional) set of “parameters” {�k}k2N, but rather as a

general representation encompassing all reasonable lin-

ear and bounded maps between past inputs/outputs and

ŷ(t|t � 1). Indeed, our assumptions are rather mild and

not limiting, as the considered class of predictors spans

all linear (and even infinite dimensional) and bounded
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Therefore, we can now cast our data-driven control prob-
lem as follows
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which can be respectively regarded as the “certainty equiv-
alence quadratic” loss, and a regularization that controls
the e↵ects of uncertainties on the future inputs.
Remark 6 The cost in (P2) still depends on the choice
of the weightings Q and R and this freedom can be ex-
ploited to recapture specific problems encountered in the
literature. For instance, by choosing Q := qW̄
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and R = rImT we obtain
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V ar[W�y|D]), (27)

so that J̄(uf ) is the control cost in [11,8] and r̄(uf )is the
corresponding optimal regularizer.

5 Predictive control under non-informative pri-
ors

At this stage, we are left to explicitly show the depen-
dence of (P2) on the available data based on the chosen
uninformative prior on the predictor (15).

To this end, we firstly introduce the vector ✓ 2 R(m+p)T

stacking the parameters {�u
k ,�

y
k}k2{1,...,T}, comprising

all information needed to characterize the predictor in
(17a). Accordingly, note that W�y in (21) can be recast
as

W�y(uf ) :=Wyr�Wf(uf , zini)=(Mr�Mini�M(uf ))✓,
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·
=Mini✓ +M(uf )✓, (28b)

and we keep the explicit dependence of M(uf ) on future
controls, as uf is our optimization variable. Moreover,
also the elements of W , �P and �u become selections of
the components of ✓. Therefore, writing W̄ , �̄P and �̄u

simply implies that the true, yet unknown, entries of ✓

on which they depend are replaced with the corresponding
elements of

✓̂ := E[✓|D]. (29)

In addition to this conditional mean, let us introduce the
conditional variance

⌃✓ := V ar[✓|D], (30)

along with the data matrix of “past” inputs/outputs

ZP := Z[1,⇢],NH
, (31)

and the output data matrix

Y⇢+1 := Y[⇢+1,⇢+1],NH
, (32)

with NH = N � ⇢.

Given these ingredients, we are now ready to state the
main result of the paper.
Theorem 1 Under the Gaussian prior in (15), for � !
1 we have that
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>
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⌃✓ = �
2(ZPZ

>
P )

�1
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Then, for this uninformative prior, the cost in (26) and
the regularizer in (27) respectively become: Perche qui
spuntano gli apici d? non dovrebbero essere tutti sem-
plicemente dei bar?Li avevo usati per far capire che questi
sono in valori ottenuti buttando e↵ettuivamente dentro
le matrici con bar i dati sulla base di (33) e (34). Sec-
ondo me chiariva, ma se ti sembra che crei confusione
ritorniamo a tutti i bar.

J
d(uf ) :=kyr� d

P zini+ 
d
uufk2Q+kur�ufk2R, (35)

r
d(uf ) :=Tr(QWd(M0�M(uf ))⌃✓(M0�M(uf ))

>), (36)

where
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��1
�d
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QWd = q
�
W

d
��> �

W
d
��1

and M0 = Mr � Mini, with Mr and Mini defined in
(28b), while W

d, �d
P and �d

u are obtained by filling the
matrices �y, �P and �u in (17c) with the corresponding

estimated entries obtained from ✓̂ in (33).
Proof in questa proof si usa (30)? Altrimenti non è
chiaro dove serve... non serve mai purche sia positive def-
inite...allora io la leverei...e specificherei il requirement
di positive definiteness dopo la (15). Sei d’accordo?

This result allows us to formulate the final Bayesian data-
driven predictive controlOnestamete non userei la parola
Bayesian...ok, se preferisci rimetto il nome che gli avevi
dato te...
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f(uf , zini) satisfies

(IpT � �y)f(uf , zini)
·
= �P zini + �uuf , (17a)

and

yf � f(uf , zini)
·
= (IpT � �y)

�1
ef , (17b)

with

�u=
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u
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...
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. . .
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u
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u
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u
1 0

3

777777775

, �y=

2

666666664
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�
y
1 0 0 . . . 0

�
y
2 �

y
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...
...

. . .
. . .

...

�
y
T�1 �

y
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y
1 0

3
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,

�P =

2

666666664

�⇢ �⇢�1 �⇢�2 . . . . . . . . . �1

0 �⇢ �⇢�1 . . . . . . . . . �2

0 0 �⇢ . . . . . . . . . �3

...
...

. . .
. . .

...
...

...

0 0 . . . 0 �⇢ . . . �T

3
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.

(17c)
Proof The proof of (17a) follows from the fact that, the
components ŷ(t+ h|t� 1) of f(uf , zini)

f(uf , zini) =

2

666664

ŷ(t|t� 1)

ŷ(t+ 1|t� 1)
...

ŷ(t+ T � 1|t� 1)

3

777775

can be recursively obtained, for h 2 {1, .., T � 1}, from
the equation:

ŷ(t+ h|t� 1) =
hX

k=1

�
y
kŷ(t+ h� k|t� 1)+

+
⇢̂NX

k=h+1

�
y
ky(t+ h� k)+

+
⇢̂NX

k=1

�
u
ku(t+ h� k)

stacking all these equations for h 2 {0, .., T � 1} and ex-
ploiting the definitions (17c), (17a) follows. Concerning
(17b), it su�ces to observe that

yf
·
=�P zini + �yyf + �uuf + ef

from which

(IpT � �y)yf
·
=�yyf + �uuf + ef

and, using (17a), (17b) follows immediately.
Remark 4 (On the choice of ⇢̂N) Although the
choice of ⇢̂N is not uniform over the parameter space,
⇢̂No can always be tuned in a data-driven fashion as
discussed in [1].
Remark 5 (Truncation in a Bayesian setup) For
finite � in (15), the truncation to ⇢ introduced in (16)
can actually be avoided, since posterior mean and vari-
ances are well-defined (i.e., bounded) even for ⇢ ! 1.
We leave the analysis of this scenario to future work.

4 From model-based to data-driven control

Equation (17b) shows that the model based T -
step-ahead prediction error covariance is given by
�
2(IpT ��y)�1(IpT ��y)�>. When defining the track-

ing cost, we thus account for this by normalizing the
tracking error by the (normalized) inverse square root
error covariance

W := IpT � �y (18)

leading to the quadratic objective function:

Lt(uf ) = kW (yr � f(uf , zini))k2Q + kur � ufk2R, (19)

where of course the weightsQ andR can be freely chosen
by the control designer to achieve specific goals.

In order to streamline notation we define the di↵erence
between the future references and the predicted outputs
as

�y(uf )=yr � f(uf , zini). (20)

so that the cost (19) can be written as

Lt(uf ) = kW�yk2Q+ kur � ufk2R. (21)

This alternative formulation allows us to link Lt(uf ) to
the characterization of the predictor provided in (17a)
and, thus, to express the conditional loss in (P1) as for-
malized in the following Proposition.
Proposition 2 Let the predictor f(uf , zini) featured in
(19) be described as in (17a), and define

�̄P := E[�P |D], �̄u := E[�u|D], W̄ = E[W |D]. (22)

Then, the data-conditioned, objective function in (P1)
is given by

E[Lt(uf )|D] = J(uf ) + r(uf ), (23a)

with
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=kW̄yr�(�̄P zini+�̄uuf )k2Q+kur�ufk2R, (24)

r(uf ) := Tr(QV ar[W�y|D]), (25)

which can be respectively regarded as the “certainty equiv-
alence quadratic” loss, and a regularization that controls
the e↵ects of uncertainties on the future inputs.
Remark 6 The cost in (P2) still depends on the choice
of the weightings Q and R and this freedom can be ex-
ploited to recapture specific problems encountered in the
literature. For instance, by choosing Q := qW̄

�>
W̄

�1

and R = rImT we obtain

J̄(uf ) := kW�yk2Q + kur � ufk2R
= qkyr�W̄

�1(�̄P zini+�̄uuf )k2+rkur�ufk2,
(26)

r̄(uf ) := Tr(qW̄�>
W̄

�1
V ar[W�y|D]), (27)

so that J̄(uf ) is the control cost in [11,8] and r̄(uf )is the
corresponding optimal regularizer.

5 Predictive control under non-informative pri-
ors

At this stage, we are left to explicitly show the depen-
dence of (P2) on the available data based on the chosen
uninformative prior on the predictor (15).

To this end, we firstly introduce the vector ✓ 2 R(m+p)T

stacking the parameters {�u
k ,�

y
k}k2{1,...,T}, comprising

all information needed to characterize the predictor in
(17a). Accordingly, note that W�y in (21) can be recast
as

W�y(uf ) :=Wyr�Wf(uf , zini)=(Mr�Mini�M(uf ))✓,
(28a)

where Mr,Mini,M(uf ) 2 RpT⇥(m+p)T are linear func-
tions of the output reference, zini and the future inputs,
satisfying the following:

Wyr = Mr✓, Wf(zini, uf )
·
=Mini✓ +M(uf )✓, (28b)

and we keep the explicit dependence of M(uf ) on future
controls, as uf is our optimization variable. Moreover,
also the elements of W , �P and �u become selections of
the components of ✓. Therefore, writing W̄ , �̄P and �̄u

simply implies that the true, yet unknown, entries of ✓

on which they depend are replaced with the corresponding
elements of

✓̂ := E[✓|D]. (29)

In addition to this conditional mean, let us introduce the
conditional variance

⌃✓ := V ar[✓|D], (30)

along with the data matrix of “past” inputs/outputs

ZP := Z[1,⇢],NH
, (31)

and the output data matrix

Y⇢+1 := Y[⇢+1,⇢+1],NH
, (32)

with NH = N � ⇢.

Given these ingredients, we are now ready to state the
main result of the paper.
Theorem 1 Under the Gaussian prior in (15), for � !
1 we have that

✓̂ = Y⇢+1Z
>
P (ZPZ

>
P )

�1
, (33)

⌃✓ = �
2(ZPZ

>
P )

�1
. (34)

Then, for this uninformative prior, the cost in (26) and
the regularizer in (27) respectively become: Perche qui
spuntano gli apici d? non dovrebbero essere tutti sem-
plicemente dei bar?Li avevo usati per far capire che questi
sono in valori ottenuti buttando e↵ettuivamente dentro
le matrici con bar i dati sulla base di (33) e (34). Sec-
ondo me chiariva, ma se ti sembra che crei confusione
ritorniamo a tutti i bar.

J
d(uf ) :=kyr� d

P zini+ 
d
uufk2Q+kur�ufk2R, (35)

r
d(uf ) :=Tr(QWd(M0�M(uf ))⌃✓(M0�M(uf ))

>), (36)

where

 d
P =

�
W

d
��1
�d

P ,  d
u =

�
W

d
��1
�d

u

QWd = q
�
W

d
��> �

W
d
��1

and M0 = Mr � Mini, with Mr and Mini defined in
(28b), while W

d, �d
P and �d

u are obtained by filling the
matrices �y, �P and �u in (17c) with the corresponding

estimated entries obtained from ✓̂ in (33).
Proof in questa proof si usa (30)? Altrimenti non è
chiaro dove serve... non serve mai purche sia positive def-
inite...allora io la leverei...e specificherei il requirement
di positive definiteness dopo la (15). Sei d’accordo?

This result allows us to formulate the final Bayesian data-
driven predictive controlOnestamete non userei la parola
Bayesian...ok, se preferisci rimetto il nome che gli avevi
dato te...
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W (yf � f(zini, uf )) = ef

Wf(uf , zini)
·
= �P zini + �uuf

✓ 2 Rp(m+p)⇢ defined stacking all the {�u

k
,�y

k
}k=1,..,⇢

When the training input is white

i.e. (sub)optimal regularization is the one used in �-DDPC with �2 = qpT�
2

N
, �3 = 0.

Proposition:

one to one correspondence between LQ decomposition in �-DDPC and
bank of ARX models
TWO QUESTIONS:

1. Do I need p(✓|D)?

... not really!

p(L|D) =

Z
p(L|✓)p(✓|D)d✓

2. Can I summarize data with a low dimensional statistic T := T (D)?

Yes if T is a su�cient for L, i.e. if

p(L|T ) =

Z
p(L|✓)p(✓|T )d✓ = p(L|D)

True if p(✓|T ) = p(✓|D)

Important Remarks:

1. There is no finite dimensional statistic unless the model is ARX, but....

2. Any model in M ' long arx (length ⇢ = number of block rows in Hankel data matrix)

• Length ⇢ can be estimated from data

• There is an approximately su�cient finite dimensional statistic
(= sample moments up to lag ⇢)

3. To be statistically e�cient the decision (optimal control design) should be function of D
through a (minimal !?!?) su�cient statistic T := T (D).

Important Remarks:

1. (Approx) Su�cient statistic for E[Lt(uf )|D}]:

T (D) :=
⇥
Y⇢+1Z

>

P
ZPZ

>

P

⇤

= sample moments up to lag ⇢
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3. To be statistically e�cient the decision (optimal control design) should be function of D
through a su�cient statistic T := T (D).

= No more, no less

Program for the second part:

1. Introduce Data Driven Predictive Control schemes (DeePC, � �DDPC etc..)
using the language of SubspaceID
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the corresponding “deterministic” output

y
d

f
:=

2

666664

y
d(t)

y
d(t+ 1)

...

y
d(t+ T � 1)

3

777775

satisfies:
y
d

f
= ŶF↵

? +OP (1/
p

N) , ŶF↵
? (34)

where ↵
? is the minimum-norm solution of the system of linear equations:

"
zini

uf

#
=

"
ZP

UF

#
↵ (35)

where ŶF := ⇧ZP ,UF (YF ).
Proof Under the assumption of Lemma 3, the matrix Zdata has full rank and, therefore, 8 zinit and uf , there exists
↵ such that "

zinit

uf

#
=

"
ZP

UF

#
↵. (36)

Thus, exploiting Theorem 2, the corresponding deterministic output satisfies

y
d

f
= ŶF↵+OP (1/

p

N) , ŶF↵.

This is true for all possible solutions of (36), and in particular it holds for its minimum-norm solution ↵
⇤.

Remark 3 (The case of deterministic systems) The reader may observe that, when e(t) = 0 (that is the system
is actually deterministic), Lemma 3 does not hold. Indeed, for for ⇢ > n, it is well know (see, e.g., [24]) that the
Hankel matrix Zdata in (31) and ZP 2 R(m+p)⇢⇥N in (35) have rank equal to

rank(Zdata) = n+m(⇢+ T ) < (m+ p)(⇢+ T ),
rank(ZP ) = n+m⇢ < (m+ p)⇢.

These relations are indeed the basis for the so-called “intersection algorithms” in subspace identification, and also can
be seen as algebraic formulations of the well known “Willems’ fundamental lemma” [28]. Nonetheless, in this case,
any finite (deterministic) trajectory zinit of the system (14) belongs to the column span of ZP . As such, provided that
zinit is an “admissible” sequence of input/output pairs of the given deterministic system, then (35) has a solution.

We are now ready to recast the control problem (16) in a data driven fashion as follows:

minimize
u(k),k2[t,t+T )

J

 "
y
d

f

uf

#!
(37a)

s.t. ↵? =

"
ZP

UF

#† "
zinit

uf

#
, (37b)

y
d

f
= ŶF↵

?
, (37c)

u(k) 2 U , y
d(k) 2 Y, k 2 [t, t+ T ), (37d)

where

J

 "
y
d

f

uf

#!
=

1

2

"
t+T�1X

k=t

ky
d(k)� yr(k)k

2
Q
+ ku(k)k2

R

#
, (37e)

and ŶF := ⇧ZP ,UF (YF ), while zinit and uf are defined as in (32) and (33).
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where ŶF := ⇧ZP ,UF (YF ).
Proof Under the assumption of Lemma 3, the matrix Zdata has full rank and, therefore, 8 zinit and uf , there exists
↵ such that "

zinit

uf

#
=

"
ZP

UF

#
↵. (36)

Thus, exploiting Theorem 2, the corresponding deterministic output satisfies

y
d

f
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= Subspace Predictive Control (SPC) 
 + 

Constraints

TWO QUESTIONS:

1. Do I need p(✓|D)?

... not really!

p(L|D) =

Z
p(L|✓)p(✓|D)d✓

2. Can I summarize data with a low dimensional statistic T := T (D)?

Yes if T is a su�cient for L, i.e. if

p(L|T ) =

Z
p(L|✓)p(✓|T )d✓ = p(L|D)

True if p(✓|T ) = p(✓|D)

Important Remarks:

1. There is no finite dimensional statistic unless the model is ARX, but....

2. Any model in M ' long arx (length ⇢ = number of block rows in Hankel data matrix)

• Length ⇢ can be estimated from data

• There is an approximately su�cient finite dimensional statistic
(= sample moments up to lag ⇢)

3. To be statistically e�cient the decision (optimal control design) should be function of D
through a (minimal !?!?) su�cient statistic T := T (D).

Program for the second part:

1. Introduce Data Driven Predictive Control schemes (DeePC, � �DDPC etc..)
using the language of SubspaceID

2. Exploit results from Subspace ID to rewrite in terms of estimated ARX model

3. Compute the error in the output prediction, discuss its quantification and
its implications for design of regularization

Order (= state dimension) NOT KNOWN

WARNING (Prediction Errors with data matrices)

ŷd
f
:= ŶF↵ = YF (I �⇧)↵ = L31�1 + L32�2

+

ŷd
f

·
= yd

f
+Hs ⇧Zp,Uf (Ef )↵| {z }

ẽf

= yd
f
+HsEf

h
Q>

1 Q>

2

i " �1

�2

#
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�2 tuned, �3 = 1

�2 = 0, �3 tuned

SPC

�-DDPC

DeePC

DeePC

Connection with (INFINITE) ARX

ŷ(t|t� 1) = Cx(t) =
⇢X

p=1

C�p|{z}
�p

u(t� p) + C p|{z}
 p

y(t� p) +O(�max|
⇢)

(ALMOST) Equivalent formulation using Estimated ARX coe�cients

(LS)

1.

{�̂k,  ̂k}k=1,..,⇢̂ = arg min k,�k

P
N

t=⇢̂+1 ky(t)�

"
⇢̂X

k=1

�kut�k +  kyt�k

#
k
2 ⇢̂ using AIC

2.
Ŷ ARX

F
:= (I �  ̂F )

�1
h
�̂PUP +  ̂PYP + �̂FUF

i

 ̂P :=

2

666664

 ̂⇢̂  ̂⇢̂�1 . . . . . .  ̂2  ̂1

0  ̂⇢̂ . . . . . .  ̂3  ̂2

...
...

. . .
...

...

0 0 . . .  ̂⇢̂ . . .  ̂T

3

777775
 ̂F :=

2

666664

0 0 . . . 0 0

 ̂1 0 . . . 0 0
...

. . .
. . .

...
...

 ̂T�1  ̂T�2 . . .  ̂1 0

3

777775

⇢̂

3 Introduction

Direct data-driven control refers to the science of learning feedback controllers from data, without first undertaking
a full modeling study of the plant to control [16]. Such a direct mapping of data onto the control action is indeed
advisable in real-world problems, as modeling usually takes about 75% of the time devoted to a control project
[17], and accurate modeling for control requires significant time and several (costly) technical expertises, e.g., in the
process domain and in the statistical tools for system identification. Additionally, accurate modeling may go well
beyond what is strictly necessary for control purposes only, since often times rather limited knowledge of the system
dynamics may be required to achieve the desired control objectives [21].

Early attempts in this direction date back to 1942, with the first studies by Ziegler and Nichols about PID auto-
tuning [30]. More sophisticated, optimization based, approaches have been derived since then for fixed-order controller
tuning, leading to a portfolio of techniques suitable for di↵erent problem formulations, see, e.g., [14,6,15,22]. However,
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4.3 Related works

Recent papers have discussed very similar problems starting from a deterministic viewpoint, i.e., assuming that
e(t) = 0, 8t in (14). Among them, we consider the problem with elastic net regularization in [13, Section IV.D], that
we rewrite for the control problem considered in this work by using our notation as follows:

minimize
uf ,y

d
f
,↵

J

 "
y
d

f

uf

#!
+ �1k↵k1 + �2k(I �⇧)↵kp (38a)

s.t.

2

664

zinit

uf

y
d

f

3

775 =

2

664

ZP

UF

YF

3

775↵, (38b)

u(k) 2 U , y
d(k) 2 Y, k 2 [t, t+ T ), (38c)

where ⇧ is the orthogonal projector onto the column span of
h
Z

>
P

U
>
F

i
, i.e.,

⇧ :=
h
Z

>
P

U
>
F

i "
ZP

UF

#†
. (38d)

The following proposition provides the connection between the problem in (38) and the one in (37).
Theorem 4 (Optimal regularization) Assuming the cost J(·) in (38) is equal to (37e), then the solution to
problem (37) coincides with the one of (38) for �1 = 0 and �2 = 1.
Proof For �1 = 0 and �2 = +1, Problem 38 reduces to

minimize
uf ,y

d
f
,↵

J

 "
y
d

f

uf

#!
(39a)

s.t.

2

664

zinit

uf

y
d

f

3

775 =

2

664

ZP

UF

YF

3

775↵, k(I �⇧)↵k = 0 (39b)

u(k) 2 U , y
d(k) 2 Y, k 2 [t, t+ T ). (39c)

In addition, by decomposing YF := ŶF + ỸF , where ŶF = ⇧ZP ,UF (YF ), and ỸF = YF �⇧ZP ,UF (YF ), we have that

ŶF = YF⇧ ỸF = YF (I �⇧).

Then, when (I �⇧)↵ = 0, we have

YF↵ = YF⇧↵+ YF (I �⇧)↵ = YF⇧↵ = ŶF↵.

This result not only shows the connection between the control problem considered in this work and the regularized
one proposed in [13], but it also puts the results shown in [13], where the role of �1 and �2 is evaluated experimentally,
into a rigorous frame.

5 The �-DDPC scheme
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TWO QUESTIONS:

1. Do I need p(✓|D)?

... not really!

p(L|D) =

Z
p(L|✓)p(✓|D)d✓

2. Can I summarize data with a low dimensional statistic T := T (D)?

Yes if T is a su�cient for L, i.e. if

p(L|T ) =

Z
p(L|✓)p(✓|T )d✓ = p(L|D)

True if p(✓|T ) = p(✓|D)

Important Remarks:

1. There is no finite dimensional statistic unless the model is ARX, but....

2. Any model in M ' long arx (length ⇢ = number of block rows in Hankel data matrix)

• Length ⇢ can be estimated from data

• There is an approximately su�cient finite dimensional statistic
(= sample moments up to lag ⇢)

3. To be statistically e�cient the decision (optimal control design) should be function of D
through a (minimal !?!?) su�cient statistic T := T (D).

Program for the second part:

1. Introduce Data Driven Predictive Control schemes (DeePC, � �DDPC etc..)
using the language of SubspaceID

2. Exploit results from Subspace ID to rewrite in terms of estimated ARX model

3. Compute the error in the output prediction, discuss its quantification and
its implications for design of regularization

Order (= state dimension) NOT KNOWN

WARNING (Prediction Errors with data matrices)

ŷd
f
:= ŶF↵ = YF (I �⇧)↵ = L31�1 + L32�2

+

ŷd
f

·
= yd

f
+Hs ⇧Zp,Uf (Ef )↵| {z }

ẽf

= yd
f
+HsEf

h
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1 Q>
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DeePC

Connection with (INFINITE) ARX

ŷ(t|t� 1) = Cx(t) =
⇢X
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u(t� p) + C p|{z}
 p
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(ALMOST) Equivalent formulation using Estimated ARX coe�cients

(LS)
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3 Introduction

Direct data-driven control refers to the science of learning feedback controllers from data, without first undertaking
a full modeling study of the plant to control [16]. Such a direct mapping of data onto the control action is indeed
advisable in real-world problems, as modeling usually takes about 75% of the time devoted to a control project
[17], and accurate modeling for control requires significant time and several (costly) technical expertises, e.g., in the
process domain and in the statistical tools for system identification. Additionally, accurate modeling may go well
beyond what is strictly necessary for control purposes only, since often times rather limited knowledge of the system
dynamics may be required to achieve the desired control objectives [21].

Early attempts in this direction date back to 1942, with the first studies by Ziegler and Nichols about PID auto-
tuning [30]. More sophisticated, optimization based, approaches have been derived since then for fixed-order controller
tuning, leading to a portfolio of techniques suitable for di↵erent problem formulations, see, e.g., [14,6,15,22]. However,
it is only recently that, with the availability of large datasets and unparalleled computing power, such a paradigm
shift in control design could be extended to more complex control architectures. For instance in the deterministic
setting, by relying on the so-called “fundamental lemma” [28], model equations can be replaced by suitable data-based
constraints 1 in the formulation of a Model Predictive Control (MPC) schemes, as discussed e.g. in [11] or [5]. Such

1
Such constraints can also be seen as an implicit, nonparametric, mapping of the input/output relationships. According to

this interpretation, some researchers legitimately prefer to denote the strategies described herein as “indirect”. For this reason,

we will simply talk about data-driven predictive control from now on.
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We are now ready to recast the control problem (27) in a data driven fashion as follows:

minimize
u(k),k2[t,t+T )
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 "
yd
f

uf

#!
(48a)

s.t. ↵? =

"
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#† "
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#
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u(k) 2 U , yd(k) 2 Y, k 2 [t, t+ T ), (48d)

where
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"
t+T�1X

k=t

kyd(k)� yr(k)k
2
Q
+ ku(k)k2

R

#
, (48e)

and ŶF := ⇧ZP ,UF (YF ), while zinit and uf are defined as in (43) and (44).

5.3 Related works

Recent papers have discussed very similar problems starting from a deterministic viewpoint, i.e., assuming that
e(t) = 0, 8t in (25). Among them, we consider the problem with elastic net regularization in [13, Section IV.D], that
we rewrite for the control problem considered in this work by using our notation as follows:
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where ⇧ is the orthogonal projector onto the column span of
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i
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The following proposition provides the connection between the problem in (49) and the one in (48).
Theorem 4 (Optimal regularization) Assuming the cost J(·) in (49) is equal to (48e), then the solution to
problem (48) coincides with the one of (49) for �1 = 0 and �2 = 1.
Proof For �1 = 0 and �2 = +1, Problem 49 reduces to
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u(k) 2 U , yd(k) 2 Y, k 2 [t, t+ T ). (50c)
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Fig. 2. Comparison of the realized performance (relative to the ground-truth
optimal performance and averaged over 100 data sets) for the two-norm kgk22
and identification-induced regularization k(I �⇧)gk22 as function of �.

Fig. 3. Realized error (relative to the ground-truth optimal performance and
averaged over 100 data sets) for a hybrid regularizer �1k(I�⇧)gk22+�2kgk1

D. Comparison and Bias-Variance Hypotheses
We now compare the direct and indirect approaches through

two case studies. The first study evaluates the performance
of both methods on the basis of “variance” error, i.e., on a
linear system with noisy measurements. The second study
evaluates the performance on the basis of “bias” error, i.e.,
on a nonlinear system with noise-free measurements.

We expect the direct method to perform better on the
nonlinear system since the indirect method erroneously selects
a linear model class thus leading to a larger “bias” error. On
the other hand, we expect the indirect method to perform better
on the linear system with noisy outputs since the identification
step filters noise thus leading to a lower “variance” error.

Comparison: Stochastic Linear System
Consider the same case study as in the Section V-A, i.e.,

same LTI system, cost, and reference. We collected data for
varying levels of noise-to-signal ratio, i.e., we considered
measurements that were affected by Gaussian noise with noise-
to-signal ratio in the set {0%, 1%, . . . , 15%}. For each noise-
to-signal ratio, T = 250 input/output data samples were
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Fig. 4. Realized median error (over 100 data sets) for the direct and indirect
(with different model order selections) methods for varying amount of data.

collected by applying a random Gaussian input. This data was
then used for both the direct and indirect methods.

For the indirect method, the inner system identification
problem (3) is again solved using N4SID [26] with prefix
horizon Tini = 5 and prediction horizon L = 20. Equipped
with a (correct) 5th-order identified model, optimal control
inputs are computed by solving (4). The indirect method was
compared to the direct method (7), with h(g) = kgk1, Tini = 5,
and � = 27. The hyper-parameters of both methods were kept
constant for all simulations below and chosen to give good
realized control performance for all noise-to-signal ratios.

For both methods we recorded the realized performance
after applying the open-loop inputs and converted it to a
percentage error with respect to the best possible performance
(i.e., if the deterministic model was exactly known). For
each noise-to-signal ratio, 100 simulations were conducted
with different random data sets. The results are displayed
in the box plot in Figure 5 and show that both methods
perform well for low levels of noise (up to approximately
2% noise-to-signal ratio). As the data becomes noisier, the
performance of the direct method degrades significantly, while
the performance of the indirect method remains relatively
constant. We remark that a slightly better albeit qualitatively
similar result is obtained with the regularizer k(I �⇧)gk22.

We attribute these observations to the fact that identification
de-noises the data. These results confirm our hypothesis that
the indirect method is superior in terms of “variance” error.

Comparison: Deterministic Nonlinear System

We now consider the scenario where the direct and indirect
methods are subject to a “bias” error, but not a “variance”
error. Consider the discrete-time nonlinear Lotka-Volterra dy-
namics considered for direct data-driven control in [57]

x(tk+1) = fnonlinear(x(tk), u(tk))

=
h

x1(tk)+�t(ax1(tk)�bx1(tk)x2(tk))
x2(tk)+�t(dx1(tk)x2(tk)�cx2(tk)+u(tk))

i
,

where tk+1 � tk = �t = 0.01, a = c = 0.5, b =
0.025, d = 0.005, and x(tk) =

⇥
x1(tk) x2(tk)

⇤>. Here,



us to parametrize the solution to (37) in terms of a lower dimensional parameter vector. We thus consider the LQ
decomposition of the joint input-output block Hankel matrix Zdata in (31), namely:
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where the matrices {Lii}
3
i=1 are all non-singular (under the assumptions of Lemma 3) and Qi have orthonormal

rows, i.e. i.e., QiQ
>
i
= I, for i = 1, . . . , 3, QiQ

>
j
= 0, i 6= j.

First of all, let us observe that ŶF := ⇧ZP ,UF (YF ) in Lemma 2 can be expressed in terms of the LQ decomposition
(40) as:

ŶF =
h
L31 L32

i "
Q1

Q2

#
. (41)

By exploiting (40) and (41), we can thus express the constraint in (35) as follows:

zinit = ZP↵ = L11Q1↵ (42a)

uf = UF↵ =
h
L21 L22

i "
Q1

Q2

#
↵, (42b)

where (42a) accounts for the initial condition of the predictive control problem, whereas (42b) links the optimal ↵
with the control input. The predicted output in (34) can then be rewritten as

ŷ
d
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= ŶF↵ =

h
L31 L32
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#
↵
?
, (43)

where ↵
? is the minimum-norm solution to (42).

We can now leverage on triangular structure of (42) to characterize the minimum-norm solution ↵
?. In particular,

(42a) always admits a solution (see Lemma 3 and Remark 3), that satisfies the following property.
Lemma 4 (Definition of �1) Let ↵

?

init
2 RN be the minimum-norm ↵ solving (42a). Then, by defining �

?
1 2

R(m+p)⇢ as the unique solution of
zinit = L11�1, (44)
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Proof Since ZP has full column rank, so does L11 and any solution ↵ to (42a) must satisfy

Q1↵ = L
�1
11 zinit = �

⇤
1 .

The minimum-norm solution ↵
⇤
init

can be found by as

↵
⇤
init

= Q
†
1�

⇤
1 = Q

>
1 �

⇤
1 ,

thus concluding the proof.

Exploiting the definition of �?
1 in Lemma 4, the control sequence uf in (42b) can be equivalently written as

uf = L21�
?
1 + L22�2

�2 = Q2↵
(45)
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We can now leverage on triangular structure of (42) to characterize the minimum-norm solution ↵
?. In particular,

(42a) always admits a solution (see Lemma 3 and Remark 3), that satisfies the following property.
Lemma 4 (Definition of �1) Let ↵

?

init
2 RN be the minimum-norm ↵ solving (42a). Then, by defining �

?
1 2

R(m+p)⇢ as the unique solution of
zinit = L11�1, (44)

↵
?

init
can be written as ↵

?

init
= Q

>
1 �

?
1 , so that

↵
?

init
2 colspan

�
Q

>
1

�
.

Proof Since ZP has full column rank, so does L11 and any solution ↵ to (42a) must satisfy

Q1↵ = L
�1
11 zinit = �

⇤
1 .

The minimum-norm solution ↵
⇤
init

can be found by as

↵
⇤
init

= Q
†
1�

⇤
1 = Q

>
1 �

⇤
1 ,

thus concluding the proof.

Exploiting the definition of �?
1 in Lemma 4, the control sequence uf in (42b) can be equivalently written as

uf = L21�
?
1 + L22�2

�2 = Q2↵
(45)
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u(t� p) + C p|{z}
 p

y(t� p) +O(�max|
⇢)

(ALMOST) Equivalent formulation using Estimated ARX coe�cients

(LS)
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{�̂k,  ̂k}k=1,..,⇢̂ = arg min k,�k

P
N

t=⇢̂+1 ky(t)�

"
⇢̂X

k=1

�kut�k +  kyt�k

#
k
2 ⇢̂ using AIC

2.
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F
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�1
h
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3 Introduction

Direct data-driven control refers to the science of learning feedback controllers from data, without first undertaking
a full modeling study of the plant to control [16]. Such a direct mapping of data onto the control action is indeed
advisable in real-world problems, as modeling usually takes about 75% of the time devoted to a control project
[17], and accurate modeling for control requires significant time and several (costly) technical expertises, e.g., in the
process domain and in the statistical tools for system identification. Additionally, accurate modeling may go well
beyond what is strictly necessary for control purposes only, since often times rather limited knowledge of the system
dynamics may be required to achieve the desired control objectives [21].

Early attempts in this direction date back to 1942, with the first studies by Ziegler and Nichols about PID auto-
tuning [30]. More sophisticated, optimization based, approaches have been derived since then for fixed-order controller
tuning, leading to a portfolio of techniques suitable for di↵erent problem formulations, see, e.g., [14,6,15,22]. However,
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Following subspace identification [12] ideas, the orthogo-
nal projection (8) can be written exploiting the LQ decom-
position of the data matrices. In particular, let us define

»

–
ZP

UF

YF

fi

fl “
»

–
L11 0 0
L21 L22 0
L31 L32 L33

fi

fl

»

–
Q1

Q2

Q3

fi

fl . (12)

where the matrices tLiiu3i“1 are all non-singular and Qi have
orthonormal rows, i.e., QiQ

J
i

“ I , for i “ 1, . . . , 3, QiQ
J
j

“
0, i ‰ j. The orthogonal projection (8) can be written in the
form:

ŶF “ L31Q1 ` L32Q2

With this notation, following the same rationale of [9], [10],
we can further reformulate (11) as:
»

–
zinit

uf

ŷf

fi

fl “
»

–
ZP

UF

ŶF

fi

fl↵ “
»

–
L11 0
L21 L22

L31 L32

fi

fl
„
Q1

Q2

⇢
↵

loomoon
�

`OP p1{
?
Nq.

(13)
and the parameters

� “
„
�1

�2

⇢
, (14)

become the new decision variables. In addition, in [9] it was
suggested to add a (slack) optimization variable �3 to model
the projection error in (8) and avoid overfitting. In particular,
the prediction (with slack) can be written as:

ȳf “
“
L31 L32

‰ „
�1

�2

⇢

looooooooomooooooooon
“ŷf

`L33�3

We refer the reader to [9] for a sound statistical mo-
tivation of this particular expression of the slack L33�3.
In particular, since L33 is generically of full rank, con-
straints/regularization should be imposed on the slack op-
timization variable �3.

A data-driven predictive controller with the same objec-
tives and constraints of (4) can be formulated as follows [10]

min
�2,�3

1

2

t`T´1ÿ

k“t

`pupkq, ȳpkq, yrpkqq ` p�1, �2, �3q (15a)

s.t.
„
uf

ȳf

⇢
“

„
L21 L22 0
L31 L32 L33

⇢ »

–
�

‹
1

�2

�3

fi

fl , (15b)

upkq P U , ȳpkq P Y, k P rt, t ` T q, (15c)

with

`pupkq, ȳpkq, yrpkqq “ }ȳpkq´yrpkq}2
Q

`}upkq}2
R
, (16)

and
�

‹
1 “ L

´1
11 zinit, (17)

where zinit is defined as in (9) and the choice of �1 straight-
forwardly follows from the initial conditions (showing the
advantages of using � instead of ↵ as the decision vector).

The purpose of this paper is to study the design and

impact of the regularization term  p�1, �2, �3q within a noisy

stochastic environment, and provide the end user with useful

hints on how to tune such a penalty term.

III. THE ROLE OF REGULARIZATION

In [9], it has been argued that the average variance of
the error on the future output predictions ŷf due to the finite
data projection errors in (8), is proportional to }�1}2`}�2}2.
Since, in the optimization problem (15), �1 is determined by
the initial conditions, it only remains to regularize �2 so as
to avoid an (unnecessarily) high variance on the predictor
and, therefore, poor control performance. In this paper, we
consider also an alternative regularization term that penalizes
directly the control input effort (in addition to the control
penalty already embedded in the control cost), and discuss
its relation with regularization on �2. Differently from [9],
we consider this jointly with presence of a slack variable
�3 and thus a related regularization. These considerations
lead to the following two forms of the regularization term
 p�1, �2, �3q in (15):

(a) Regularization on �2 and slack �3

 �2p�1, �2, �3q :“ �2}�2}2 ` �3}�3}2; (18)

(b) Regularization on input uf and slack �3

 up�1, �2, �3q :“�2}uf }2 ` �3}�3}2
“�2}L21�1 ` L22�2}2 ` �3}�3}2;

(19)

where p�2,�3q are hyper-parameters to be determined.

A. Theoretical analysis

We first state a Theorem the establishes the connection
between (18) and (19).

Theorem 1: If the training input sequence uptq in the
Hankel matrices UF and UP is (zero mean) white with
variance �

2
I , the regularization terms  �2 in (18) and  u in

(19) are asymptotically (in N ) equivalent up to a rescaling
of the weight �2.

Proof: Under the assumption that uptq is white noise,
then the future inputs are uncorrelated with past input and
output data, so that the projection ÛF :“ ⇧ZP pUF q of UF

on the joint past ZP tends to zero as OP p1{
?
Nq, more

precisely

ÛF :“ L21Q1. (20)

Since Q1Q
J
1 “ I , it follows that L21 “ OP p1{

?
Nq. In

addition, since u is white, its sample covariance matrix
UFU

J
F

converges to �
2
I , i.e.

UFU
J
F

“ L21L
J
21loomoon

OP p1{Nq

`L22L
J
22

NÑ8›Ñ �
2
I (21)

Equations (20) and (21) imply that, asymptotically in N ,
L21 » 0 and L22 » �I . Therefore we have:
 up�1, �2, �3q :“ �2}L21�1 ` L22�2}2 ` �3}�3}2

» �2�
2}�2}2 ` �3}�3}2

(22)

Following subspace identification [12] ideas, the orthogo-
nal projection (8) can be written exploiting the LQ decom-
position of the data matrices. In particular, let us define
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UF

YF

fi

fl “
»

–
L11 0 0
L21 L22 0
L31 L32 L33

fi

fl

»

–
Q1

Q2

Q3

fi

fl . (12)

where the matrices tLiiu3i“1 are all non-singular and Qi have
orthonormal rows, i.e., QiQ

J
i

“ I , for i “ 1, . . . , 3, QiQ
J
j

“
0, i ‰ j. The orthogonal projection (8) can be written in the
form:

ŶF “ L31Q1 ` L32Q2

With this notation, following the same rationale of [9], [10],
we can further reformulate (11) as:
»

–
zinit

uf

ŷf

fi

fl “
»

–
ZP

UF

ŶF

fi

fl↵ “
»

–
L11 0
L21 L22

L31 L32

fi

fl
„
Q1

Q2

⇢
↵

loomoon
�

`OP p1{
?
Nq.

(13)
and the parameters

� “
„
�1

�2

⇢
, (14)

become the new decision variables. In addition, in [9] it was
suggested to add a (slack) optimization variable �3 to model
the projection error in (8) and avoid overfitting. In particular,
the prediction (with slack) can be written as:

ȳf “
“
L31 L32

‰ „
�1

�2

⇢

looooooooomooooooooon
“ŷf

`L33�3

We refer the reader to [9] for a sound statistical mo-
tivation of this particular expression of the slack L33�3.
In particular, since L33 is generically of full rank, con-
straints/regularization should be imposed on the slack op-
timization variable �3.

A data-driven predictive controller with the same objec-
tives and constraints of (4) can be formulated as follows [10]

min
�2,�3

1

2

t`T´1ÿ

k“t

`pupkq, ȳpkq, yrpkqq ` p�1, �2, �3q (15a)

s.t.
„
uf

ȳf

⇢
“

„
L21 L22 0
L31 L32 L33

⇢ »

–
�

‹
1

�2

�3

fi

fl , (15b)

upkq P U , ȳpkq P Y, k P rt, t ` T q, (15c)

with

`pupkq, ȳpkq, yrpkqq “ }ȳpkq´yrpkq}2
Q

`}upkq}2
R
, (16)

and
�

‹
1 “ L

´1
11 zinit, (17)

where zinit is defined as in (9) and the choice of �1 straight-
forwardly follows from the initial conditions (showing the
advantages of using � instead of ↵ as the decision vector).

The purpose of this paper is to study the design and

impact of the regularization term  p�1, �2, �3q within a noisy

stochastic environment, and provide the end user with useful

hints on how to tune such a penalty term.

III. THE ROLE OF REGULARIZATION

In [9], it has been argued that the average variance of
the error on the future output predictions ŷf due to the finite
data projection errors in (8), is proportional to }�1}2`}�2}2.
Since, in the optimization problem (15), �1 is determined by
the initial conditions, it only remains to regularize �2 so as
to avoid an (unnecessarily) high variance on the predictor
and, therefore, poor control performance. In this paper, we
consider also an alternative regularization term that penalizes
directly the control input effort (in addition to the control
penalty already embedded in the control cost), and discuss
its relation with regularization on �2. Differently from [9],
we consider this jointly with presence of a slack variable
�3 and thus a related regularization. These considerations
lead to the following two forms of the regularization term
 p�1, �2, �3q in (15):

(a) Regularization on �2 and slack �3

 �2p�1, �2, �3q :“ �2}�2}2 ` �3}�3}2; (18)

(b) Regularization on input uf and slack �3

 up�1, �2, �3q :“�2}uf }2 ` �3}�3}2
“�2}L21�1 ` L22�2}2 ` �3}�3}2;

(19)

where p�2,�3q are hyper-parameters to be determined.

A. Theoretical analysis

We first state a Theorem the establishes the connection
between (18) and (19).

Theorem 1: If the training input sequence uptq in the
Hankel matrices UF and UP is (zero mean) white with
variance �

2
I , the regularization terms  �2 in (18) and  u in

(19) are asymptotically (in N ) equivalent up to a rescaling
of the weight �2.

Proof: Under the assumption that uptq is white noise,
then the future inputs are uncorrelated with past input and
output data, so that the projection ÛF :“ ⇧ZP pUF q of UF

on the joint past ZP tends to zero as OP p1{
?
Nq, more

precisely

ÛF :“ L21Q1. (20)

Since Q1Q
J
1 “ I , it follows that L21 “ OP p1{

?
Nq. In

addition, since u is white, its sample covariance matrix
UFU

J
F

converges to �
2
I , i.e.

UFU
J
F

“ L21L
J
21loomoon

OP p1{Nq

`L22L
J
22

NÑ8›Ñ �
2
I (21)

Equations (20) and (21) imply that, asymptotically in N ,
L21 » 0 and L22 » �I . Therefore we have:
 up�1, �2, �3q :“ �2}L21�1 ` L22�2}2 ` �3}�3}2

» �2�
2}�2}2 ` �3}�3}2

(22)

yd
f
= ŶF↵

? +O(⇢
p

log(log(N))/N) , ŶF↵
? (15)

minimize
�2

J

 "
yd
f

uf

#!
(16a)

s.t.

"
uf

yd
f

#
=

"
L21 L22

L31 L32

#"
�?
1

�2

#
, (16b)

u(k) 2 U , yd(k) 2 Y, k 2 [t, t+ T ), (16c)

WARNING: if k(I�⇧)↵k 6= 0 then we would be exploting future
training noise to fit the reference signal yr. The only reason as to
why, in some papers it seems advantageous to leave some slack
and allow for k(I � ⇧)↵k ' 0 is that this acts as an implicit
regularizer for the choice of the control input (See later on for
more discussion).

yd
f|{z}

=Ŷf↵

=
�
yd
f

�⇤
| {z }

=(�X̂⇢+HdUF )↵

+Hs ⇧Zp,Uf (Ef )↵| {z }
ẽf

Tr [V ar{ẽf}]

T
= �2 k�k

2

N

minimze
�1,�2

J

 "
yd
f

uf

#!
+ �2k�2k

2 (17a)

s.t.

2

664

zinit

uf

yd
f

3

775 =

2

664

L11 0

L21 L22

L31 L32

3

775

"
�1

�2

#
, (17b)

u(k) 2 U , yd(k) 2 Y, k 2 [t, t+ T ), (17c)

2 NCCR

“noise” ( = unmeasurable stationary signal)

Assumptions:

1. Linear time-invariant predictor

y(t) = ŷ(t|t� 1) + e(t)

ŷ(t|t� 1) =
1X

k=1

�u

k
ut�k + �y

k
yt�k

1X

k=1

|�u

k
| < 1

1X

k=1

|�y

k
| < 1

2. (Conditional) Martingale di↵erence property with constant conditional variance

E[e(t)|Z�

t
] = 0 V ar{e(t)|Z�

t
} = V ar{e(t)} = �2

5

TWO QUESTIONS:

1. Do I need p(✓|D)?

... not really!

p(L|D) =

Z
p(L|✓)p(✓|D)d✓

2. Can I summarize data with a low dimensional statistic T := T (D)?

Yes if T is a su�cient for L, i.e. if

p(L|T ) =

Z
p(L|✓)p(✓|T )d✓ = p(L|D)

True if p(✓|T ) = p(✓|D)

Important Remarks:

1. There is no finite dimensional statistic unless the model is ARX, but....

2. Any model in M ' long arx (length ⇢ = number of block rows in Hankel data matrix)

• Length ⇢ can be estimated from data

• There is an approximately su�cient finite dimensional statistic
(= sample moments up to lag ⇢)

3. To be statistically e�cient the decision (optimal control design) should be function of D
through a (minimal !?!?) su�cient statistic T := T (D).

Program for the second part:

1. Introduce Data Driven Predictive Control schemes (DeePC, � �DDPC etc..)
using the language of SubspaceID

2. Exploit results from Subspace ID to rewrite in terms of estimated ARX model

3. Compute the error in the output prediction, discuss its quantification and
its implications for design of regularization

Order (= state dimension) NOT KNOWN

WARNING (Prediction Errors with data matrices)

ŷd
f
:= ŶF↵ = YF (I �⇧)↵ = L31�1 + L32�2

+

ŷd
f

·
= yd

f
+Hs ⇧Zp,Uf (Ef )↵| {z }

ẽf

= yd
f
+HsEf

h
Q>

1 Q>

2

i " �1

�2

#
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�2 tuned, �3 = 1

�2 = 0, �3 tuned

SPC

�-DDPC

DeePC

DeePC

Connection with (INFINITE) ARX

ŷ(t|t� 1) = Cx(t) =
⇢X

p=1

C�p|{z}
�p

u(t� p) + C p|{z}
 p

y(t� p) +O(�max|
⇢)

(ALMOST) Equivalent formulation using Estimated ARX coe�cients

(LS)

1.

{�̂k,  ̂k}k=1,..,⇢̂ = arg min k,�k

P
N

t=⇢̂+1 ky(t)�

"
⇢̂X

k=1

�kut�k +  kyt�k

#
k
2 ⇢̂ using AIC

2.
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F
:= (I �  ̂F )
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 ̂P :=
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. . .
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3 Introduction

Direct data-driven control refers to the science of learning feedback controllers from data, without first undertaking
a full modeling study of the plant to control [16]. Such a direct mapping of data onto the control action is indeed
advisable in real-world problems, as modeling usually takes about 75% of the time devoted to a control project
[17], and accurate modeling for control requires significant time and several (costly) technical expertises, e.g., in the
process domain and in the statistical tools for system identification. Additionally, accurate modeling may go well
beyond what is strictly necessary for control purposes only, since often times rather limited knowledge of the system
dynamics may be required to achieve the desired control objectives [21].

Early attempts in this direction date back to 1942, with the first studies by Ziegler and Nichols about PID auto-
tuning [30]. More sophisticated, optimization based, approaches have been derived since then for fixed-order controller
tuning, leading to a portfolio of techniques suitable for di↵erent problem formulations, see, e.g., [14,6,15,22]. However,
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3 Introduction

Direct data-driven control refers to the science of learning feedback controllers from data, without first undertaking
a full modeling study of the plant to control [16]. Such a direct mapping of data onto the control action is indeed
advisable in real-world problems, as modeling usually takes about 75% of the time devoted to a control project
[17], and accurate modeling for control requires significant time and several (costly) technical expertises, e.g., in the
process domain and in the statistical tools for system identification. Additionally, accurate modeling may go well
beyond what is strictly necessary for control purposes only, since often times rather limited knowledge of the system
dynamics may be required to achieve the desired control objectives [21].

Early attempts in this direction date back to 1942, with the first studies by Ziegler and Nichols about PID auto-
tuning [30]. More sophisticated, optimization based, approaches have been derived since then for fixed-order controller
tuning, leading to a portfolio of techniques suitable for di↵erent problem formulations, see, e.g., [14,6,15,22]. However,
it is only recently that, with the availability of large datasets and unparalleled computing power, such a paradigm
shift in control design could be extended to more complex control architectures. For instance in the deterministic
setting, by relying on the so-called “fundamental lemma” [28], model equations can be replaced by suitable data-based
constraints 1 in the formulation of a Model Predictive Control (MPC) schemes, as discussed e.g. in [11] or [5]. Such

1
Such constraints can also be seen as an implicit, nonparametric, mapping of the input/output relationships. According to

this interpretation, some researchers legitimately prefer to denote the strategies described herein as “indirect”. For this reason,

we will simply talk about data-driven predictive control from now on.
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�-DDPC
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DeePC

�1 = 0 �2 = �3

�2 = 0 �2 = �3

Connection with (INFINITE) ARX

ŷ(t|t� 1) = Cx(t) =
⇢X

p=1

C�p|{z}
�p

u(t� p) + C p|{z}
 p

y(t� p) +O(�max|
⇢)

(ALMOST) Equivalent formulation using Estimated ARX coe�cients
(LS)

1.

{�̂k,  ̂k}k=1,..,⇢̂ = arg min k,�k

P
N

t=⇢̂+1 ky(t)�

"
⇢̂X

k=1

�kut�k +  kyt�k

#
k
2 ⇢̂ using AIC

2.
Ŷ ARX

F
:= (I �  ̂F )

�1
h
�̂PUP +  ̂PYP + �̂FUF
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 ̂P :=

2
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 ̂⇢̂  ̂⇢̂�1 . . . . . .  ̂2  ̂1
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3
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3

777775

⇢̂

Conclusions

1. Model-free/nonparametric methods

• Agnostic to model structure (�� Bias, ++ Uncertainty quantification)
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us to parametrize the solution to (37) in terms of a lower dimensional parameter vector. We thus consider the LQ
decomposition of the joint input-output block Hankel matrix Zdata in (31), namely:

2

664

ZP

UF

YF

3

775 =

2

664

L11 0 0

L21 L22 0

L31 L32 L33

3

775

2

664

Q1

Q2

Q3

3

775 , (40)

where the matrices {Lii}
3
i=1 are all non-singular (under the assumptions of Lemma 3) and Qi have orthonormal

rows, i.e. i.e., QiQ
>
i
= I, for i = 1, . . . , 3, QiQ

>
j
= 0, i 6= j.

First of all, let us observe that ŶF := ⇧ZP ,UF (YF ) in Lemma 2 can be expressed in terms of the LQ decomposition
(40) as:

ŶF =
h
L31 L32

i "
Q1

Q2

#
. (41)

By exploiting (40) and (41), we can thus express the constraint in (35) as follows:

zinit = ZP↵ = L11Q1↵ (42a)

uf = UF↵ =
h
L21 L22

i "
Q1

Q2

#
↵, (42b)

where (42a) accounts for the initial condition of the predictive control problem, whereas (42b) links the optimal ↵
with the control input. The predicted output in (34) can then be rewritten as

ŷ
d

f
= ŶF↵ =

h
L31 L32

i "
Q1

Q2

#
↵
?
, (43)

where ↵
? is the minimum-norm solution to (42).

We can now leverage on triangular structure of (42) to characterize the minimum-norm solution ↵
?. In particular,

(42a) always admits a solution (see Lemma 3 and Remark 3), that satisfies the following property.
Lemma 4 (Definition of �1) Let ↵

?

init
2 RN be the minimum-norm ↵ solving (42a). Then, by defining �

?
1 2

R(m+p)⇢ as the unique solution of
zinit = L11�1, (44)

↵
?

init
can be written as ↵

?

init
= Q

>
1 �

?
1 , so that

↵
?

init
2 colspan

�
Q

>
1

�
.

Proof Since ZP has full column rank, so does L11 and any solution ↵ to (42a) must satisfy

Q1↵ = L
�1
11 zinit = �

⇤
1 .

The minimum-norm solution ↵
⇤
init

can be found by as

↵
⇤
init

= Q
†
1�

⇤
1 = Q

>
1 �

⇤
1 ,

thus concluding the proof.

Exploiting the definition of �?
1 in Lemma 4, the control sequence uf in (42b) can be equivalently written as

uf = L21�
?
1 + L22�2

�2 = Q2↵
(45)
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W (yf � f(zini, uf )) = ef

Wf(uf , zini)
·
= �P zini + �uuf

✓ 2 R(m+p)⇢ defined stacking all the {�u

k
,�y

k
}k=1,..,⇢

Proposition:

one to one correspondence between LQ decomposition in �-DDPC and
bank of ARX models

TWO QUESTIONS:

1. Do I need p(✓|D)?

... not really!

p(L|D) =

Z
p(L|✓)p(✓|D)d✓

2. Can I summarize data with a low dimensional statistic T := T (D)?

Yes if T is a su�cient for L, i.e. if

p(L|T ) =

Z
p(L|✓)p(✓|T )d✓ = p(L|D)

True if p(✓|T ) = p(✓|D)

Important Remarks:

1. There is no finite dimensional statistic unless the model is ARX, but....

2. Any model in M ' long arx (length ⇢ = number of block rows in Hankel data matrix)

• Length ⇢ can be estimated from data

• There is an approximately su�cient finite dimensional statistic
(= sample moments up to lag ⇢)

3. To be statistically e�cient the decision (optimal control design) should be function of D
through a (minimal !?!?) su�cient statistic T := T (D).

Important Remarks:

1. (Approx) Su�cient statistic for E[Lt(uf )|D}]:

T (D) :=
⇥
Y⇢+1Z

>

P
ZPZ

>

P

⇤

= sample moments up to lag ⇢

2. Same (approx) su�cient statistic for VARX model of order ⇢
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Denoting with diag{A} the diagonal matrix with diagonal
elements equal to the diagonal elements ofA and defining
the following quantities:

D33 := diag{L33} (41a)

Ŵ := D33L
�1
33 , (41b)

ẽf (zini, uf ) := Wỹf (zini, uf ) (41c)
·
=Ŵ ỹf (zini, uf )

= Ŵ (ŷf (zini, uf )� f(zini, uf ))

with L33 defined according to (35) and ỹf (zini, uf ) im-
plicitly defined in (38), we can now establish a relation-
ship between the predictors (35) used in DeePC and �-
DDPC and the “true” predictor f(zini, uf ).
Proposition 3 The predictor ŷf (zini, uf ) satisfies the
following relation:

Ŵ ŷf (zini, uf ) = Wf(zini, uf )��W ŷf (zini, uf )+

+ẽf (zini, uf )

(42)
with Ŵ and ẽf (zini, uf ) defined as in (41).
Proof By exploiting (38), it is easy to show that the
following set of equalities hold:

Ŵ ŷf (zini, uf ) = Wŷf (zini, uf )��W ỹf (zini, uf )

= Wf(zini, uf ) +Wỹf (zini, uf )+

��W ŷf (zini, uf )

= Wf(zini, uf ) + ẽf (zini, uf )+

��W ŷf (zini, uf )

where �W := W � Ŵ . This completes the proof of the
equality (42).

Accordingly, let us introduce the following loss and regu-
larization term

J�(uf ) = kŴ (yr � ŷf (zini, uf ))|k2Q + kur � ufk2R,
(43a)

r�(uf ) = Tr(QV ar[ñf (zinit, uf )]), (43b)

with

ñf (zini, uf ) := �W (yr � ŷf (zini, uf ))� ẽf (zini, uf ).
(43c)

The following Proposition provides a connection between
the LQ decomposition (35) and a bank of VARX models
that will be useful in the remaining of the paper.
Proposition 4 Let ��,i be built from the i-th block rows

of �P,� , �u,� and �y,� as follows 2 :

��,i := [�i,: �
u
i,: �

y
i,1:i] (44)

and consider the VARX models

Y⇢+i = ��,i

2

664

ZP

UF

Y[⇢+1:⇢+i]

3

775

| {z }
:=Z�,i

+E⇢+i. (45)

Define the associated least squares estimators of ��,i:

�̂�,i := Y⇢+iZ
>
�,i

⇥
Z�,iZ

>
�,i

⇤�1
(46)

and the matrices �̂P,� , �̂u,� and �̂y,� built with the es-

timated coe�cients �̂�,i. Then the following equalities
hold:

Ŵ = IpT � �̂y,�

D33Q3 = YF � �̂P,�ZP � �̂u,�UF � �̂y,�YF

L31 = Ŵ
�1�̂P,�L11 + Ŵ

�1�̂u,�L21

L32 = Ŵ
�1�̂u,�L22

L33 = Ŵ
�1

D33

(47)

and, conversely:

�̂y,� = IpT � Ŵ

�̂u,� = ŴL32L
�1
22

�̂P,� = Ŵ
⇥
L31L

�1
11 � L32L

�1
22 L

�1
22 L21

⇤
(48)

By leveraging these instrumental definitions ansd the
connection given in proposition 4 between the LQ decom-
position of data magtrices and the bank of ARX mod-
els (45), we can now formalize the connection between
DeePC (with the consistency constraint), �-DDPC and
Bayesian-DDPC as follows.
Theorem 2 Let J�(uf ) and rf (uf ) be defined as in (43)
and assume the (block) rows of the matrices (40) are in-
dependent and with prior of the form (15). In the un-
informative prior limit (K� = �K, K = K

>
> 0 and

� ! 1), the following relationship holds:

E[Lt(uf )|Ŵ ŷf (zini, uf ), Ŵ ]
·
=J�(uf ) + r�(uf ), (49)

with Lt(uf ) defined in (10) and J�(uf ) being the loss
exploited in DeePC with the consistency constraint and

2 Using Matlab-like notation for the block elements defined
in (40).
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�1�̂u,�L22

L33 = Ŵ
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where �W := W � Ŵ . This completes the proof of the
equality (42).

Accordingly, let us introduce the following loss and regu-
larization term
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L31 = Ŵ
�1�̂P,�L11 + Ŵ

�1�̂u,�L21

L32 = Ŵ
�1�̂u,�L22

L33 = Ŵ
�1

D33

(47)

and, conversely:

�̂y,� = IpT � Ŵ

�̂u,� = ŴL32L
�1
22

�̂P,� = Ŵ
⇥
L31L

�1
11 � L32L

�1
22 L

�1
22 L21

⇤
(48)

By leveraging these instrumental definitions ansd the
connection given in proposition 4 between the LQ decom-
position of data magtrices and the bank of ARX mod-
els (45), we can now formalize the connection between
DeePC (with the consistency constraint), �-DDPC and
Bayesian-DDPC as follows.
Theorem 2 Let J�(uf ) and rf (uf ) be defined as in (43)
and assume the (block) rows of the matrices (40) are in-
dependent and with prior of the form (15). In the un-
informative prior limit (K� = �K, K = K

>
> 0 and

� ! 1), the following relationship holds:

E[Lt(uf )|Ŵ ŷf (zini, uf ), Ŵ ]
·
=J�(uf ) + r�(uf ), (49)

with Lt(uf ) defined in (10) and J�(uf ) being the loss
exploited in DeePC with the consistency constraint and

2 Using Matlab-like notation for the block elements defined
in (40).
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problem as follows:

û
?
f := argmin

uf2Uf

J
d(uf )+r

d(uf ) (P3)

where the cost and the regularizer are defined as in (35)
and (36), respectively. It is important to observe that
M(uf ) is linear on the future input sequence, making the
regularizer r

d(uf ) in (36) quadratic in uf . This result
reflects the presence of a quadratic regularization term
in most of existing formulation of data-driven predic-
tive control, see e.g., [5,11,3]. At the same time, di↵er-
ently from existing DDPC problems, the one we obtain
does not require the user to tune any additional hyper-
parameter, since the regularization penalty can be readily
obtained from the data.
Remark 7 (Dependence of (34) from �2) The reg-
ularization term in (P3) depends on the (unknown)
conditional variance of the one-step prediction error
(see (14) and (34)). Nonetheless, this quantity can be
estimated from the available data D as explained in the
next section.

6 Bayesian-DDPC, DeePC and �-DDPC

In this section, we focus on highlighting how two recently
proposed techniques for data-driven predictive control,
namely the DeePC scheme with “consistency regularizer”
proposed in [11, Section IV.B] and �-DDPC [6], fit within
the framework of problem (P3).

With this in mind, we firstly introduce the following Han-
kel matrices:

UP := U[0,⇢�1],NH
, YP := Y[0,⇢�1],NH

, (34a)

UF := U[⇢,⇢+T�1],NH
, YF := Y[⇢,⇢+t�1],NH

, (34b)

respectively collecting “past” and “future” data samples.
In turn, they allow us to recall the predictors exploited in
the two aforementioned schemes, namely
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2
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�1
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�3

3

775, (35)

with ↵DeePC 2 RNH , �1 2 R⇢(m+p), �2 2 RmT and �3 2
RpT . Let us then focus on the case in which �3 is bound
to be zero and, thus, ↵DeePC is subject to the consistency
constraint

k(INH
�⇧)↵DeePCk=0, with ⇧=

h
U

>
P Y

>
P U

>
F

i
2
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†
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In this scenario, the predictor used in �-DDPC (which
corresponds to the one exploited in DeePC) can be rewrit-
ten as:

ŷf (zini, uf )=L31 L
�1
11 zini| {z }

=�1(zini)

+L32 L
�1
22

⇥
uf�L21L

�1
11 zini

⇤
| {z }

=�2(uf )

=
⇥
L31�L32L

�1
22 L21

⇤
L
�1
11 zini+L32L

�1
22 uf .

(37)

As shown in [?], this (measurable) function of the data
D can be thought of as a (noisy) measurement of the true
predictor f(zini, uf ), as it satisfy a relation of the form:

ŷf (zini, uf ) = f(zini, uf ) + ỹf (zini, uf ). (38)

Consider now the “true” model based predictor in (17a)
parametrized as follows

(IpT � �u,�)| {z }
:=W

f(zini, uf )
·
= �P,�zini + �u,�uf (39)

where the matrices �y,� , �u,� and �P,� are defined sim-
ilarly to �y, �u and �P with following di↵erences: (i)
each row is parametrized independently, �u,� is not con-
strained to be lower triangular in the estimation process;
since we do not need to work explicitely with the upper
triangular elements we denote them with ⇤). Finally (iii)
all the rows of �P,� are fully parametrized and do not
have zeros like �P does.
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�
u
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�
u
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u
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. . .
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...

�
u
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u
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u
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�
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�
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y
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3
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,
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3
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(40)
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W (yf � f(zini, uf )) = ef

Wf(uf , zini)
·
= �P zini + �uuf

✓ 2 R(m+p)⇢ defined stacking all the {�u

k
,�y

k
}k=1,..,⇢

Proposition:

one to one correspondence between LQ decomposition in �-DDPC and
bank of ARX models

TWO QUESTIONS:

1. Do I need p(✓|D)?

... not really!

p(L|D) =

Z
p(L|✓)p(✓|D)d✓

2. Can I summarize data with a low dimensional statistic T := T (D)?

Yes if T is a su�cient for L, i.e. if

p(L|T ) =

Z
p(L|✓)p(✓|T )d✓ = p(L|D)

True if p(✓|T ) = p(✓|D)

Important Remarks:

1. There is no finite dimensional statistic unless the model is ARX, but....

2. Any model in M ' long arx (length ⇢ = number of block rows in Hankel data matrix)

• Length ⇢ can be estimated from data

• There is an approximately su�cient finite dimensional statistic
(= sample moments up to lag ⇢)

3. To be statistically e�cient the decision (optimal control design) should be function of D
through a (minimal !?!?) su�cient statistic T := T (D).

Important Remarks:

1. (Approx) Su�cient statistic for E[Lt(uf )|D}]:

T (D) :=
⇥
Y⇢+1Z

>

P
ZPZ

>

P

⇤

= sample moments up to lag ⇢

2. Same (approx) su�cient statistic for VARX model of order ⇢
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Denoting with diag{A} the diagonal matrix with diagonal
elements equal to the diagonal elements ofA and defining
the following quantities:

D33 := diag{L33} (41a)

Ŵ := D33L
�1
33 , (41b)

ẽf (zini, uf ) := Wỹf (zini, uf ) (41c)
·
=Ŵ ỹf (zini, uf )

= Ŵ (ŷf (zini, uf )� f(zini, uf ))

with L33 defined according to (35) and ỹf (zini, uf ) im-
plicitly defined in (38), we can now establish a relation-
ship between the predictors (35) used in DeePC and �-
DDPC and the “true” predictor f(zini, uf ).
Proposition 3 The predictor ŷf (zini, uf ) satisfies the
following relation:

Ŵ ŷf (zini, uf ) = Wf(zini, uf )��W ŷf (zini, uf )+

+ẽf (zini, uf )

(42)
with Ŵ and ẽf (zini, uf ) defined as in (41).
Proof By exploiting (38), it is easy to show that the
following set of equalities hold:

Ŵ ŷf (zini, uf ) = Wŷf (zini, uf )��W ỹf (zini, uf )

= Wf(zini, uf ) +Wỹf (zini, uf )+

��W ŷf (zini, uf )

= Wf(zini, uf ) + ẽf (zini, uf )+

��W ŷf (zini, uf )

where �W := W � Ŵ . This completes the proof of the
equality (42).

Accordingly, let us introduce the following loss and regu-
larization term

J�(uf ) = kŴ (yr � ŷf (zini, uf ))|k2Q + kur � ufk2R,
(43a)

r�(uf ) = Tr(QV ar[ñf (zinit, uf )]), (43b)

with

ñf (zini, uf ) := �W (yr � ŷf (zini, uf ))� ẽf (zini, uf ).
(43c)

The following Proposition provides a connection between
the LQ decomposition (35) and a bank of VARX models
that will be useful in the remaining of the paper.
Proposition 4 Let ��,i be built from the i-th block rows

of �P,� , �u,� and �y,� as follows 2 :

��,i := [�i,: �
u
i,: �

y
i,1:i] (44)

and consider the VARX models (i = 1, .., T )

Y⇢+i = ��,i

2

664

ZP

UF

Y[⇢+1:⇢+i]

3

775

| {z }
:=Z�,i

+E⇢+i. (45)

Define the associated least squares estimators of ��,i:

�̂�,i := Y⇢+iZ
>
�,i

⇥
Z�,iZ

>
�,i

⇤�1
(46)

and the matrices �̂P,� , �̂u,� and �̂y,� built with the es-

timated coe�cients �̂�,i. Then the following equalities
hold:

Ŵ = IpT � �̂y,�

D33Q3 = YF � �̂P,�ZP � �̂u,�UF � �̂y,�YF

L31 = Ŵ
�1�̂P,�L11 + Ŵ

�1�̂u,�L21

L32 = Ŵ
�1�̂u,�L22

L33 = Ŵ
�1

D33

(47)

and, conversely:

�̂y,� = IpT � Ŵ

�̂u,� = ŴL32L
�1
22

�̂P,� = Ŵ
⇥
L31 � L32L

�1
22 L21

⇤
L
�1
11

(48)

By leveraging these instrumental definitions ansd the
connection given in proposition 4 between the LQ decom-
position of data magtrices and the bank of ARX mod-
els (45), we can now formalize the connection between
DeePC (with the consistency constraint), �-DDPC and
Bayesian-DDPC as follows.
Theorem 2 Let J�(uf ) and rf (uf ) be defined as in (43)
and assume the (block) rows of the matrices (40) are in-
dependent and with prior of the form (15). In the un-
informative prior limit (K� = �K, K = K

>
> 0 and

� ! 1), the following relationship holds:

E[Lt(uf )|Ŵ ŷf (zini, uf ), Ŵ ]
·
=J�(uf ) + r�(uf ), (49)

with Lt(uf ) defined in (10) and J�(uf ) being the loss
exploited in DeePC with the consistency constraint and

2 Using Matlab-like notation for the block elements defined
in (40).
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r�(uf ) = Tr(QV ar[ñf (zinit, uf )]), (43b)

with
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J�(uf ) = kŴ (yr � ŷf (zini, uf ))|k2Q + kur � ufk2R,
(43a)
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L31 = Ŵ
�1�̂P,�L11 + Ŵ

�1�̂u,�L21

L32 = Ŵ
�1�̂u,�L22

L33 = Ŵ
�1

D33

(47)

and, conversely:

�̂y,� = IpT � Ŵ

�̂u,� = ŴL32L
�1
22

�̂P,� = Ŵ
⇥
L31L

�1
11 � L32L

�1
22 L

�1
22 L21

⇤
(48)

By leveraging these instrumental definitions ansd the
connection given in proposition 4 between the LQ decom-
position of data magtrices and the bank of ARX mod-
els (45), we can now formalize the connection between
DeePC (with the consistency constraint), �-DDPC and
Bayesian-DDPC as follows.
Theorem 2 Let J�(uf ) and rf (uf ) be defined as in (43)
and assume the (block) rows of the matrices (40) are in-
dependent and with prior of the form (15). In the un-
informative prior limit (K� = �K, K = K

>
> 0 and

� ! 1), the following relationship holds:

E[Lt(uf )|Ŵ ŷf (zini, uf ), Ŵ ]
·
=J�(uf ) + r�(uf ), (49)

with Lt(uf ) defined in (10) and J�(uf ) being the loss
exploited in DeePC with the consistency constraint and

2 Using Matlab-like notation for the block elements defined
in (40).
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elements equal to the diagonal elements ofA and defining
the following quantities:

D33 := diag{L33} (41a)
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�1

D33

(47)

and, conversely:

�̂y,� = IpT � Ŵ
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�-DDPC. The expression of asymptotic variance ⌃ñ of
ñf (zini, uf )

V ar[
p
Nñf |M]

N!1�! ⌃ñ (50)

will be given in Lemma ??. Thus, the regularization term
r�(uf ) takes the form

r�(uf )
·
=
Tr(Q⌃ñ)

N

Proof We shall exploit the decomposition of the second
moment in terms of square mean plus variance, i.e. (re-
call the definition �y := yr � f(zini, uf ))

E[Lt(uf )|D� ] = kE[W�y|D� ]k2Q + kur � ufk2R
+Tr(QV ar[W�y|D� ])

with D� := {Ŵ ŷf (zini, uf ), Ŵ}. We have the following:

E[Wyr|D� ] = Ŵyr

E[Wf(zini, uf )|D� ] = Ŵ ŷf (zini, uf )

V ar[W (yr � f(zini, uf ))|D� ] = V ar[ñf (zini, uf )|M]+

+o(1/N)

The first two equations derive from the fact that Ŵyr and
Ŵ ŷf (zini, uf ) can be seen as unbiased measurements of
Wyr and Wf(zini, uf ) respectively.

As far as the expression the conditional variance we first
observe that, using (42) and the definition (43c)

W�y � E[W�y|D� ] = �W (yr � ŷf (zini, uf ))

�ẽf (zini, uf )

= ñf (zini, uf )

The equivalence up to o(1/N) terms derive from the fact
that the conditional variance depends upon the estimated
predictor (and other sample data covariances). However,
since these estimators are consistent, they can be replaced
by their limits or, equivalently, by the “true” ones, i.e.
as if M was known.

The equivalences in (49) show that computing the ex-
pected cost conditionally on the predictor exploited in
DeePC and �-DDPC leads to a “certainty equivalence”
control problem with Tikhonov regularization of the same
form of the ones considered in [6,11]. Nonetheless, thanks
to the asymptotic result in (50), no tuning of the regular-
ization parameter is needed since also � can be estimated
as discussed in the following remark.

*********************************
DA SISTEMARE
*********************************

Moreover, let us further introduce

g(k) :=
h
z
>
ini u

>
f

i
⌃�1(0)⌃>(k)⌃�1(0)

"
zini

uf

#
, (51a)

⌃(k) := E
""

zini(t)

uf (t)

# h
z
>
ini(t� k) u

>
f (t� k)

i#
, (51b)

where the dependence of g(k) on zini and uf is not ex-
plicitly highlighted to simplify the notation, and Jk is the
shift matrix with all elements equal to zero, except those
in the super-diagonal or sub-diagonal which are set to
one, i.e.,

[Jk]i,j =

⇢
1, if j � i 6= k

0, otherwise.
(51c)

*********************************
*********************************
Remark 8 (Estimating � from data) As shown in
[?], the data-driven factor L33 in (35) can be exploited
to construct an estimate of � as follows:

�̂ =
Tr(L33)

pT
, (52)

which further depends on the length T of the prediction
horizon and the dimension of the output. This estimate
can be replaced to � in (34), thus making (P3) fully data-
driven and independent from any tunable parameter.

6.1 DeePC and �-DDPC revisited

The results presented so far highlight that both DeePC
and �-DDPC rely on two main modifications that make
their solution sub-optimal with respect to the one obtained
by tackling (P3). Specifically:

1. as shown by Theorem 2, the cost J�(uf ) in (43a)
is retrieved by replacing the (optimal) conditioning
on the full data set D with its (sub-optimal) pre-
processed version, obtained from “projected” data;

2. by using (35) as a predictor, the structure of the op-
timal predictor in (17a) is not enforced. In partic-
ular, the causality on future control inputs and the
(block) Toeplitz structure of W , �P and �u are not
imposed by design.

Both these approximations are instead not performed
when considering Bayesian-DDPC, which preserves the
conditional dependence on D and the structure of the op-
timal predictor by construction.
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MAIN THEOREM 4

Under the assumption that the input sequence in D is
white and the additional (yet rather conventional) choice
of penalizing the tracking error as a multiple of the iden-
tity (Q = qIpT in (43)), the mean cost conditioned to the
DeePC/�-DDPC predictor in (49) can be further proven
to be equivalent to the loss exploited in the regularized
�-DDPC scheme introduced in [, ], as formalized in the
following.
Proposition 5 Let the input sequence comprised in D
be white and Q = qIpT in (43). Then, the regularizer
r�(uf ) in (43b) is equivalent to

r�(uf ) =
qpT�

2

N
[k�1k2 + k�2k2], (53)

with �1 and �2 given by (35).
Proof By the definitions in (43b)-(51) and the asymp-
totic result in (50), it holds that

r�(uf )
·
=
qpT�

2

N

h
z
>
ini u

>
f

i
⌃�1(0)

"
zini

uf

#
, (54)

since Q = qI. Based on (35), note that

"
zini

uf

#
=

"
L11 0

L21 L22

#

| {z }
=L

"
�1

�2

#

| {z }
=�12

.

To prove that (54) is equivalent to (53), we can then
exploit the fact that the input sequence in D is white. As
shown in [5], this characteristic of the available data in
turn leads to

L21 �!
N!1

0, L33 �!
N!1

�IpT , Ŵ �!
N!1

IpT , (55)

and, thus,
LL

> �!
N!1

⌃(0). (56)

Therefore, the following equality holds

h
z
>
ini u

>
f

i
⌃�1(0)

"
zini

uf

#
=�

>
12L

>⌃�1(0)L�12, (57)

leading to

r�(uf ) =
qpT�

2

N
�
>
12L

>⌃�1(0)L�12 �!
N!1

qpT�
2

N
k�12k2,

(58)
and concluding the proof.

Since �1 is fixed by enforcing the initial conditions via
zini = L11�1, then (53) reduces to

r�(uf ) =
qpT�

2

N
k�2k2, (59)

and, thus, only a regularization on �2 as in the scheme de-
scribed in [, Section] is enforced. Under a suitable choice
of the regularization scheme and the penalties, the take-
home massages from this result are the following.

1. The conditional cost in (49) comprises a certainty
equivalence loss J�(uf ) and a quadratic regulariza-
tion r�(uf ).

2. The �-DDPC scheme with regularization on �2 pre-
sented in [6, Section 5.1] is equivalent to optimiz-
ing the expected cost conditionally on the predic-
tor ŷf (zini, uf ) in (37). Since this is not necessarily
a su�cient statistics for the control problem, this
might lead to sub-optimal results with respect to the
ones attained when optimizing the expectation con-
ditioned to the whole dataset D, as done in (P3).

3. The regularizer in (53) is the same as that found

in [?, Eq. (18)] with �3 = 1 and �2 = qpT�2

N ,
suggesting that in the considered setup 3 4 there
is no need to augment the cost with lasso-like reg-
ularizations (see [11, Section IV.C]), nor to keep
the “slack variable” �3 as an optimization variable,
which can instead be set to zero. In turn, this im-
plies the necessity of imposing the consistency con-
straint in (36) and, thus, using the scheme pro-
posed in [11, Eq. (18)], making the regularization
in the DeePC scheme discussed in [11, Eqs. (24)-
(25)] eventually too feeble (while requiring the tun-
ing of an hyper-parameter).Qui io sarei un po piu
morbido...ho provato a ammorbidire...

7 Numerical examples

The findings of this paper are here illustrated by means
of some simulation results. As we deem the tuning-free
regularization scheme in (P3) as the main “practical”
outcome of the work, we show experimentally that the
closed-loop performance attained by solving (P3) with
auto-tuned regularization is indistinguishable from those
obtained from the formulations in [?] and [11, Section
IV.B], where the regularization parameters are optimized
via an oracle that can exploit o↵-line closed loop experi-
ments on the true system to choose the best performing

3 Questa a↵ermazione mi torna se non ci sono vincoli
sull’uscita, ma se ci sono allora per garantire che siano soddis-
fatti la slack ci potrebbe volere. L’ho resa un po’ più smooth
anche per non distruggere sul nascere il lavoro sulla stabilità
con vincoli terminali. non sono sicuro di capire. La formu-
lazione min E[cost D] rimane uguale anche se aggiungiamo i
constraints, quindi non vedo come problemi con constrains,
possano beneficiare dello slack. Certo un puo dire che lo slack
e’ un proxy della regolarizzazione l2 sul gamma2... ]
4 La formulazione rimane la stessa, ma i vincoli terminali
sono vincoli di uguaglianza...almeno da quello che mi veniva
fuori dai test risultava che la regolarizzazione non bastava in
caso di vincoli di uguaglianza...se ci sono vincoli di box non
ci sono invece problemi. La specificazione sul setup sarebbe
per lo più riferita a questo...
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W (yf � f(zini, uf )) = ef

Wf(uf , zini)
·
= �P zini + �uuf

✓ 2 R(m+p)⇢ defined stacking all the {�u

k
,�y

k
}k=1,..,⇢

When the training input is white

i.e. optimal regularization is the one used in �-DDPC with �2 = qpT�
2

N

Proposition:

one to one correspondence between LQ decomposition in �-DDPC and
bank of ARX models
TWO QUESTIONS:

1. Do I need p(✓|D)?

... not really!

p(L|D) =

Z
p(L|✓)p(✓|D)d✓

2. Can I summarize data with a low dimensional statistic T := T (D)?

Yes if T is a su�cient for L, i.e. if

p(L|T ) =

Z
p(L|✓)p(✓|T )d✓ = p(L|D)

True if p(✓|T ) = p(✓|D)

Important Remarks:

1. There is no finite dimensional statistic unless the model is ARX, but....

2. Any model in M ' long arx (length ⇢ = number of block rows in Hankel data matrix)

• Length ⇢ can be estimated from data

• There is an approximately su�cient finite dimensional statistic
(= sample moments up to lag ⇢)

3. To be statistically e�cient the decision (optimal control design) should be function of D
through a (minimal !?!?) su�cient statistic T := T (D).

Important Remarks:

1. (Approx) Su�cient statistic for E[Lt(uf )|D}]:

T (D) :=
⇥
Y⇢+1Z

>

P
ZPZ

>

P

⇤

= sample moments up to lag ⇢

7

yd
f
= ŶF↵

? +O(⇢
p

log(log(N))/N) , ŶF↵
? (15)

minimize
�2

J

 "
yd
f

uf

#!
(16a)

s.t.

"
uf

yd
f

#
=

"
L21 L22

L31 L32

#"
�?
1

�2

#
, (16b)

u(k) 2 U , yd(k) 2 Y, k 2 [t, t+ T ), (16c)

WARNING: if k(I�⇧)↵k 6= 0 then we would be exploting future
training noise to fit the reference signal yr. The only reason as to
why, in some papers it seems advantageous to leave some slack
and allow for k(I � ⇧)↵k ' 0 is that this acts as an implicit
regularizer for the choice of the control input (See later on for
more discussion).

yd
f|{z}

=Ŷf↵

=
�
yd
f

�⇤
| {z }

=(�X̂⇢+HdUF )↵

+Hs ⇧Zp,Uf (Ef )↵| {z }
ẽf

Tr [V ar{ẽf}]

T
= �2 k�k

2

N

minimze
�1,�2

J

 "
yd
f

uf

#!
+ �2k�2k

2 (17a)

s.t.

2
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zinit

uf

yd
f

3

775 =

2
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L11 0

L21 L22

L31 L32

3

775

"
�1

�2

#
, (17b)

u(k) 2 U , yd(k) 2 Y, k 2 [t, t+ T ), (17c)

2 NCCR

“noise” ( = unmeasurable stationary signal)

Assumptions:

1. Linear time-invariant predictor

y(t) = ŷ(t|t� 1) + e(t)

ŷ(t|t� 1) =
1X

k=1

�u

k
ut�k + �y

k
yt�k

1X

k=1

|�u

k
| < 1

1X

k=1

|�y

k
| < 1

2. (Conditional) Martingale di↵erence property with constant conditional variance

E[e(t)|Z�

t
] = 0 V ar{e(t)|Z�

t
} = V ar{e(t)} = �2

5

Denoting with diag{A} the diagonal matrix with diagonal
elements equal to the diagonal elements ofA and defining
the following quantities:

D33 := diag{L33} (41a)

Ŵ := D33L
�1
33 , (41b)

ẽf (zini, uf ) := Wỹf (zini, uf ) (41c)
·
=Ŵ ỹf (zini, uf )

= Ŵ (ŷf (zini, uf )� f(zini, uf ))

with L33 defined according to (35) and ỹf (zini, uf ) im-
plicitly defined in (38), we can now establish a relation-
ship between the predictors (35) used in DeePC and �-
DDPC and the “true” predictor f(zini, uf ).
Proposition 3 The predictor ŷf (zini, uf ) satisfies the
following relation:

Ŵ ŷf (zini, uf ) = Wf(zini, uf )��W ŷf (zini, uf )+

+ẽf (zini, uf )

(42)
with Ŵ and ẽf (zini, uf ) defined as in (41).
Proof By exploiting (38), it is easy to show that the
following set of equalities hold:

Ŵ ŷf (zini, uf ) = Wŷf (zini, uf )��W ỹf (zini, uf )

= Wf(zini, uf ) +Wỹf (zini, uf )+

��W ŷf (zini, uf )

= Wf(zini, uf ) + ẽf (zini, uf )+

��W ŷf (zini, uf )

where �W := W � Ŵ . This completes the proof of the
equality (42).

Accordingly, let us introduce the following loss and regu-
larization term

J�(uf ) = kŴ (yr � ŷf (zini, uf ))|k2Q + kur � ufk2R,
(43a)

r�(uf ) = Tr(QV ar[ñf (zinit, uf )]), (43b)

with

ñf (zini, uf ) := �W (yr � ŷf (zini, uf ))� ẽf (zini, uf ).
(43c)

The following Proposition provides a connection between
the LQ decomposition (35) and a bank of VARX models
that will be useful in the remaining of the paper.
Proposition 4 Let ��,i be built from the i-th block rows

of �P,� , �u,� and �y,� as follows 2 :

��,i := [�i,: �
u
i,: �

y
i,1:i] (44)

and consider the VARX models (i = 1, .., T )

Y⇢+i = ��,i

2

664

ZP

UF

Y[⇢+1:⇢+i]

3

775

| {z }
:=Z�,i

+E⇢+i. (45)

Define the associated least squares estimators of ��,i:

�̂�,i := Y⇢+iZ
>
�,i

⇥
Z�,iZ

>
�,i

⇤�1
(46)

and the matrices �̂P,� , �̂u,� and �̂y,� built with the es-

timated coe�cients �̂�,i. Then the following equalities
hold:

Ŵ = IpT � �̂y,�

D33Q3 = YF � �̂P,�ZP � �̂u,�UF � �̂y,�YF

L31 = Ŵ
�1�̂P,�L11 + Ŵ

�1�̂u,�L21

L32 = Ŵ
�1�̂u,�L22

L33 = Ŵ
�1

D33

(47)

and, conversely:

�̂y,� = IpT � Ŵ

�̂u,� = ŴL32L
�1
22

�̂P,� = Ŵ
⇥
L31L

�1
11 � L32L

�1
22 L

�1
22 L21

⇤
(48)

By leveraging these instrumental definitions ansd the
connection given in proposition 4 between the LQ decom-
position of data magtrices and the bank of ARX mod-
els (45), we can now formalize the connection between
DeePC (with the consistency constraint), �-DDPC and
Bayesian-DDPC as follows.
Theorem 2 Let J�(uf ) and rf (uf ) be defined as in (43)
and assume the (block) rows of the matrices (40) are in-
dependent and with prior of the form (15). In the un-
informative prior limit (K� = �K, K = K

>
> 0 and

� ! 1), the following relationship holds:

E[Lt(uf )|Ŵ ŷf (zini, uf ), Ŵ ]
·
=J�(uf ) + r�(uf ), (49)

with Lt(uf ) defined in (10) and J�(uf ) being the loss
exploited in DeePC with the consistency constraint and

2 Using Matlab-like notation for the block elements defined
in (40).
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Denoting with diag{A} the diagonal matrix with diagonal
elements equal to the diagonal elements ofA and defining
the following quantities:

D33 := diag{L33} (41a)

Ŵ := D33L
�1
33 , (41b)

ẽf (zini, uf ) := Wỹf (zini, uf ) (41c)
·
=Ŵ ỹf (zini, uf )

= Ŵ (ŷf (zini, uf )� f(zini, uf ))

with L33 defined according to (35) and ỹf (zini, uf ) im-
plicitly defined in (38), we can now establish a relation-
ship between the predictors (35) used in DeePC and �-
DDPC and the “true” predictor f(zini, uf ).
Proposition 3 The predictor ŷf (zini, uf ) satisfies the
following relation:

Ŵ ŷf (zini, uf ) = Wf(zini, uf )��W ŷf (zini, uf )+

+ẽf (zini, uf )

(42)
with Ŵ and ẽf (zini, uf ) defined as in (41).
Proof By exploiting (38), it is easy to show that the
following set of equalities hold:

Ŵ ŷf (zini, uf ) = Wŷf (zini, uf )��W ỹf (zini, uf )

= Wf(zini, uf ) +Wỹf (zini, uf )+

��W ŷf (zini, uf )

= Wf(zini, uf ) + ẽf (zini, uf )+

��W ŷf (zini, uf )

where �W := W � Ŵ . This completes the proof of the
equality (42).

Accordingly, let us introduce the following loss and regu-
larization term

J�(uf ) = kŴ (yr � ŷf (zini, uf ))|k2Q + kur � ufk2R,
(43a)

r�(uf ) = Tr(QV ar[ñf (zinit, uf )]), (43b)

with

ñf (zini, uf ) := �W (yr � ŷf (zini, uf ))� ẽf (zini, uf ).
(43c)

The following Proposition provides a connection between
the LQ decomposition (35) and a bank of VARX models
that will be useful in the remaining of the paper.
Proposition 4 Let ��,i be built from the i-th block rows

of �P,� , �u,� and �y,� as follows 2 :

��,i := [�i,: �
u
i,: �

y
i,1:i] (44)

and consider the VARX models (i = 1, .., T )

Y⇢+i = ��,i

2

664

ZP

UF

Y[⇢+1:⇢+i]

3

775

| {z }
:=Z�,i

+E⇢+i. (45)

Define the associated least squares estimators of ��,i:

�̂�,i := Y⇢+iZ
>
�,i

⇥
Z�,iZ

>
�,i

⇤�1
(46)

and the matrices �̂P,� , �̂u,� and �̂y,� built with the es-

timated coe�cients �̂�,i. Then the following equalities
hold:

Ŵ = IpT � �̂y,�

D33Q3 = YF � �̂P,�ZP � �̂u,�UF � �̂y,�YF

L31 = Ŵ
�1�̂P,�L11 + Ŵ

�1�̂u,�L21

L32 = Ŵ
�1�̂u,�L22

L33 = Ŵ
�1

D33

(47)

and, conversely:

�̂y,� = IpT � Ŵ

�̂u,� = ŴL32L
�1
22

�̂P,� = Ŵ
⇥
L31L

�1
11 � L32L

�1
22 L

�1
22 L21

⇤
(48)

By leveraging these instrumental definitions ansd the
connection given in proposition 4 between the LQ decom-
position of data magtrices and the bank of ARX mod-
els (45), we can now formalize the connection between
DeePC (with the consistency constraint), �-DDPC and
Bayesian-DDPC as follows.
Theorem 2 Let J�(uf ) and rf (uf ) be defined as in (43)
and assume the (block) rows of the matrices (40) are in-
dependent and with prior of the form (15). In the un-
informative prior limit (K� = �K, K = K

>
> 0 and

� ! 1), the following relationship holds:

E[Lt(uf )|Ŵ ŷf (zini, uf ), Ŵ ]
·
=J�(uf ) + r�(uf ), (49)

with Lt(uf ) defined in (10) and J�(uf ) being the loss
exploited in DeePC with the consistency constraint and

2 Using Matlab-like notation for the block elements defined
in (40).

7

Under the assumption that the input sequence in D is
white and the additional (yet rather conventional) choice
of penalizing the tracking error as a multiple of the iden-
tity (Q = qIpT in (43)), the mean cost conditioned to the
DeePC/�-DDPC predictor in (49) can be further proven
to be equivalent to the loss exploited in the regularized
�-DDPC scheme introduced in [, ], as formalized in the
following.
Proposition 5 Let the input sequence comprised in D
be white and Q = qIpT in (43). Then, the regularizer
r�(uf ) in (43b) is equivalent to

r�(uf ) =
qpT�

2

N
[k�1k2 + k�2k2], (53)

with �1 and �2 given by (35).
Proof By the definitions in (43b)-(51) and the asymp-
totic result in (50), it holds that

r�(uf )
·
=
qpT�

2

N

h
z
>
ini u

>
f

i
⌃�1(0)

"
zini

uf

#
, (54)

since Q = qI. Based on (35), note that

"
zini

uf

#
=

"
L11 0

L21 L22

#

| {z }
=L

"
�1

�2

#

| {z }
=�12

.

To prove that (54) is equivalent to (53), we can then
exploit the fact that the input sequence in D is white. As
shown in [5], this characteristic of the available data in
turn leads to

L21 �!
N!1

0, L33 �!
N!1

�IpT , Ŵ �!
N!1

IpT , (55)

and, thus,
LL

> �!
N!1

⌃(0). (56)

Therefore, the following equality holds

h
z
>
ini u

>
f

i
⌃�1(0)

"
zini

uf

#
=�

>
12L

>⌃�1(0)L�12, (57)

leading to

r�(uf ) =
qpT�

2

N
�
>
12L

>⌃�1(0)L�12 �!
N!1

qpT�
2

N
k�12k2,

(58)
and concluding the proof.

Since �1 is fixed by enforcing the initial conditions via
zini = L11�1, then (53) reduces to

r�(uf ) =
qpT�

2

N
k�2k2, (59)

and, thus, only a regularization on �2 as in the scheme de-
scribed in [, Section] is enforced. Under a suitable choice
of the regularization scheme and the penalties, the take-
home massages from this result are the following.

1. The conditional cost in (49) comprises a certainty
equivalence loss J�(uf ) and a quadratic regulariza-
tion r�(uf ).

2. The �-DDPC scheme with regularization on �2 pre-
sented in [6, Section 5.1] is equivalent to optimiz-
ing the expected cost conditionally on the predic-
tor ŷf (zini, uf ) in (37). Since this is not necessarily
a su�cient statistics for the control problem, this
might lead to sub-optimal results with respect to the
ones attained when optimizing the expectation con-
ditioned to the whole dataset D, as done in (P3).

3. The regularizer in (53) is the same as that found

in [?, Eq. (18)] with �3 = 1 and �2 = qpT�2

N ,
suggesting that in the considered setup 3 4 there
is no need to augment the cost with lasso-like reg-
ularizations (see [11, Section IV.C]), nor to keep
the “slack variable” �3 as an optimization variable,
which can instead be set to zero. In turn, this im-
plies the necessity of imposing the consistency con-
straint in (36) and, thus, using the scheme pro-
posed in [11, Eq. (18)], making the regularization
in the DeePC scheme discussed in [11, Eqs. (24)-
(25)] eventually too feeble (while requiring the tun-
ing of an hyper-parameter).Qui io sarei un po piu
morbido...ho provato a ammorbidire...

7 Numerical examples

The findings of this paper are here illustrated by means
of some simulation results. As we deem the tuning-free
regularization scheme in (P3) as the main “practical”
outcome of the work, we show experimentally that the
closed-loop performance attained by solving (P3) with
auto-tuned regularization is indistinguishable from those
obtained from the formulations in [?] and [11, Section
IV.B], where the regularization parameters are optimized
via an oracle that can exploit o↵-line closed loop experi-
ments on the true system to choose the best performing

3 Questa a↵ermazione mi torna se non ci sono vincoli
sull’uscita, ma se ci sono allora per garantire che siano soddis-
fatti la slack ci potrebbe volere. L’ho resa un po’ più smooth
anche per non distruggere sul nascere il lavoro sulla stabilità
con vincoli terminali. non sono sicuro di capire. La formu-
lazione min E[cost D] rimane uguale anche se aggiungiamo i
constraints, quindi non vedo come problemi con constrains,
possano beneficiare dello slack. Certo un puo dire che lo slack
e’ un proxy della regolarizzazione l2 sul gamma2... ]
4 La formulazione rimane la stessa, ma i vincoli terminali
sono vincoli di uguaglianza...almeno da quello che mi veniva
fuori dai test risultava che la regolarizzazione non bastava in
caso di vincoli di uguaglianza...se ci sono vincoli di box non
ci sono invece problemi. La specificazione sul setup sarebbe
per lo più riferita a questo...

9

W (yf � f(zini, uf )) = ef

Wf(uf , zini)
·
= �P zini + �uuf

✓ 2 Rp(m+p)⇢ defined stacking all the {�u

k
,�y

k
}k=1,..,⇢

When:

• training input is white
• nontrivial technical assummtions on prior
• minor approximations

i.e. (sub)optimal regularization is the one used in �-DDPC with �2 = qpT�
2

N
, �3 = 1.

Proposition:

one to one correspondence between LQ decomposition in �-DDPC and
bank of ARX models

TWO QUESTIONS:

1. Do I need p(✓|D)?

... not really!

p(L|D) =

Z
p(L|✓)p(✓|D)d✓

2. Can I summarize data with a low dimensional statistic T := T (D)?

Yes if T is a su�cient for L, i.e. if

p(L|T ) =

Z
p(L|✓)p(✓|T )d✓ = p(L|D)

True if p(✓|T ) = p(✓|D)

Important Remarks:

1. There is no finite dimensional statistic unless the model is ARX, but....

2. Any model in M ' long arx (length ⇢ = number of block rows in Hankel data matrix)

• Length ⇢ can be estimated from data

• There is an approximately su�cient finite dimensional statistic
(= sample moments up to lag ⇢)

3. To be statistically e�cient the decision (optimal control design) should be function of D
through a (minimal !?!?) su�cient statistic T := T (D).

Important Remarks:

8



IMPORTANT REMARK
Theorem 1 [Optimal] 

Denoting with diag{A} the diagonal matrix with diagonal
elements equal to the diagonal elements ofA and defining
the following quantities:

D33 := diag{L33} (41a)

Ŵ := D33L
�1
33 , (41b)

ẽf (zini, uf ) := Wỹf (zini, uf ) (41c)
·
=Ŵ ỹf (zini, uf )

= Ŵ (ŷf (zini, uf )� f(zini, uf ))

with L33 defined according to (35) and ỹf (zini, uf ) im-
plicitly defined in (38), we can now establish a relation-
ship between the predictors (35) used in DeePC and �-
DDPC and the “true” predictor f(zini, uf ).
Proposition 3 The predictor ŷf (zini, uf ) satisfies the
following relation:

Ŵ ŷf (zini, uf ) = Wf(zini, uf )��W ŷf (zini, uf )+

+ẽf (zini, uf )

(42)
with Ŵ and ẽf (zini, uf ) defined as in (41).
Proof By exploiting (38), it is easy to show that the
following set of equalities hold:

Ŵ ŷf (zini, uf ) = Wŷf (zini, uf )��W ỹf (zini, uf )

= Wf(zini, uf ) +Wỹf (zini, uf )+

��W ŷf (zini, uf )

= Wf(zini, uf ) + ẽf (zini, uf )+

��W ŷf (zini, uf )

where �W := W � Ŵ . This completes the proof of the
equality (42).

Accordingly, let us introduce the following loss and regu-
larization term

J�(uf ) = kŴ (yr � ŷf (zini, uf ))|k2Q + kur � ufk2R,
(43a)

r�(uf ) = Tr(QV ar[ñf (zinit, uf )]), (43b)

with

ñf (zini, uf ) := �W (yr � ŷf (zini, uf ))� ẽf (zini, uf ).
(43c)

The following Proposition provides a connection between
the LQ decomposition (35) and a bank of VARX models
that will be useful in the remaining of the paper.
Proposition 4 Let ��,i be built from the i-th block rows

of �P,� , �u,� and �y,� as follows 2 :

��,i := [�i,: �
u
i,: �

y
i,1:i] (44)

and consider the VARX models (i = 1, .., T )

Y⇢+i = ��,i

2

664

ZP

UF

Y[⇢+1:⇢+i]

3

775

| {z }
:=Z�,i

+E⇢+i. (45)

Define the associated least squares estimators of ��,i:

�̂�,i := Y⇢+iZ
>
�,i

⇥
Z�,iZ

>
�,i

⇤�1
(46)

and the matrices �̂P,� , �̂u,� and �̂y,� built with the es-

timated coe�cients �̂�,i. Then the following equalities
hold:

Ŵ = IpT � �̂y,�

D33Q3 = YF � �̂P,�ZP � �̂u,�UF � �̂y,�YF

L31 = Ŵ
�1�̂P,�L11 + Ŵ

�1�̂u,�L21

L32 = Ŵ
�1�̂u,�L22

L33 = Ŵ
�1

D33

(47)

and, conversely:

�̂y,� = IpT � Ŵ

�̂u,� = ŴL32L
�1
22

�̂P,� = Ŵ
⇥
L31L

�1
11 � L32L

�1
22 L

�1
22 L21

⇤
(48)

By leveraging these instrumental definitions ansd the
connection given in proposition 4 between the LQ decom-
position of data magtrices and the bank of ARX mod-
els (45), we can now formalize the connection between
DeePC (with the consistency constraint), �-DDPC and
Bayesian-DDPC as follows.
Theorem 2 Let J�(uf ) and rf (uf ) be defined as in (43)
and assume the (block) rows of the matrices (40) are in-
dependent and with prior of the form (15). In the un-
informative prior limit (K� = �K, K = K

>
> 0 and

� ! 1), the following relationship holds:

E[Lt(uf )|Ŵ ŷf (zini, uf ), Ŵ ]
·
=J�(uf ) + r�(uf ), (49)

with Lt(uf ) defined in (10) and J�(uf ) being the loss
exploited in DeePC with the consistency constraint and

2 Using Matlab-like notation for the block elements defined
in (40).
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Theorem 3 [                 /                   ] 

f(uf , zini) satisfies

(IpT � �y)f(uf , zini)
·
= �P zini + �uuf , (17a)

and

yf � f(uf , zini)
·
= (IpT � �y)

�1
ef , (17b)

with

�u=

2

666666664

0 0 0 . . . 0

�
u
1 0 0 . . . 0

�
u
2 �

u
1 0 . . . 0

.

.

.
.
.
.

. . .
. . .

.

.

.

�
u
T�1 �

u
T�2 . . . �

u
1 0

3

777777775

, �y=

2

666666664

0 0 0 . . . 0

�
y
1 0 0 . . . 0

�
y
2 �

y
1 0 . . . 0

.

.

.
.
.
.

. . .
. . .

.

.

.

�
y
T�1 �

y
T�2 . . . �

y
1 0

3

777777775

,

�P =

2

666666664

�⇢ �⇢�1 �⇢�2 . . . . . . . . . �1

0 �⇢ �⇢�1 . . . . . . . . . �2

0 0 �⇢ . . . . . . . . . �3

.

.

.
.
.
.

. . .
. . .

.

.

.
.
.
.

.

.

.

0 0 . . . 0 �⇢ . . . �T

3

777777775

.

(17c)
Proof The proof of (17a) follows from the fact that, the

components ŷ(t+ h|t� 1) of f(uf , zini)

f(uf , zini) =

2

666664

ŷ(t|t� 1)

ŷ(t+ 1|t� 1)
.
.
.

ŷ(t+ T � 1|t� 1)

3

777775

can be recursively obtained, for h 2 {1, .., T � 1}, from
the equation:

ŷ(t+ h|t� 1) =
hX

k=1

�
y
kŷ(t+ h� k|t� 1)+

+
⇢̂NX

k=h+1

�
y
ky(t+ h� k)+

+
⇢̂NX

k=1

�
u
ku(t+ h� k)

stacking all these equations for h 2 {0, .., T � 1} and ex-

ploiting the definitions (17c), (17a) follows. Concerning
(17b), it su�ces to observe that

yf
·
=�P zini + �yyf + �uuf + ef

from which

(IpT � �y)yf
·
=�yyf + �uuf + ef

and, using (17a), (17b) follows immediately.

Remark 4 (On the choice of ⇢̂N) Although the

choice of ⇢̂N is not uniform over the parameter space,

⇢̂No can always be tuned in a data-driven fashion as

discussed in [1].

Remark 5 (Truncation in a Bayesian setup) For

finite � in (15), the truncation to ⇢ introduced in (16)
can actually be avoided, since posterior mean and vari-

ances are well-defined (i.e., bounded) even for ⇢ ! 1.

We leave the analysis of this scenario to future work.

4 From model-based to data-driven control

Equation (17b) shows that the model based T -
step-ahead prediction error covariance is given by
�
2(IpT ��y)�1(IpT ��y)�>. When defining the track-

ing cost, we thus account for this by normalizing the
tracking error by the (normalized) inverse square root
error covariance

W := IpT � �y (18)

leading to the quadratic objective function:

Lt(uf ) = kW (yr � f(uf , zini))k2Q + kur � ufk2R, (19)

where of course the weightsQ andR can be freely chosen
by the control designer to achieve specific goals.

In order to streamline notation we define the di↵erence
between the future references and the predicted outputs
as

�y(uf )=yr � f(uf , zini). (20)

so that the cost (19) can be written as

Lt(uf ) = kW�yk2Q+ kur � ufk2R. (21)

This alternative formulation allows us to link Lt(uf ) to
the characterization of the predictor provided in (17a)
and, thus, to express the conditional loss in (P1) as for-
malized in the following Proposition.
Proposition 2 Let the predictor f(uf , zini) featured in

(19) be described as in (17a), and define

�̄P := E[�P |D], �̄u := E[�u|D], W̄ = E[W |D]. (22)

Then, the data-conditioned, objective function in (P1)
is given by

E[Lt(uf )|D] = J(uf ) + r(uf ), (23a)

4

�2 tuned, �3 = 1

�2 = 0, �3 tuned

SPC

�-DDPC

DeePC

DeePC

Connection with (INFINITE) ARX

ŷ(t|t� 1) = Cx(t) =
⇢X

p=1

C�p|{z}
�p

u(t� p) + C p|{z}
 p

y(t� p) +O(�max|
⇢)

(ALMOST) Equivalent formulation using Estimated ARX coe�cients

(LS)

1.

{�̂k,  ̂k}k=1,..,⇢̂ = arg min k,�k

P
N

t=⇢̂+1 ky(t)�

"
⇢̂X

k=1

�kut�k +  kyt�k

#
k
2 ⇢̂ using AIC

2.
Ŷ ARX

F
:= (I �  ̂F )

�1
h
�̂PUP +  ̂PYP + �̂FUF

i

 ̂P :=

2

666664

 ̂⇢̂  ̂⇢̂�1 . . . . . .  ̂2  ̂1

0  ̂⇢̂ . . . . . .  ̂3  ̂2

...
...

. . .
...

...

0 0 . . .  ̂⇢̂ . . .  ̂T

3

777775
 ̂F :=

2

666664

0 0 . . . 0 0

 ̂1 0 . . . 0 0
...

. . .
. . .

...
...

 ̂T�1  ̂T�2 . . .  ̂1 0

3

777775

⇢̂

3 Introduction

Direct data-driven control refers to the science of learning feedback controllers from data, without first undertaking
a full modeling study of the plant to control [16]. Such a direct mapping of data onto the control action is indeed
advisable in real-world problems, as modeling usually takes about 75% of the time devoted to a control project
[17], and accurate modeling for control requires significant time and several (costly) technical expertises, e.g., in the
process domain and in the statistical tools for system identification. Additionally, accurate modeling may go well
beyond what is strictly necessary for control purposes only, since often times rather limited knowledge of the system
dynamics may be required to achieve the desired control objectives [21].

Early attempts in this direction date back to 1942, with the first studies by Ziegler and Nichols about PID auto-
tuning [30]. More sophisticated, optimization based, approaches have been derived since then for fixed-order controller
tuning, leading to a portfolio of techniques suitable for di↵erent problem formulations, see, e.g., [14,6,15,22]. However,
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Connection with (INFINITE) ARX
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3 Introduction

Direct data-driven control refers to the science of learning feedback controllers from data, without first undertaking
a full modeling study of the plant to control [16]. Such a direct mapping of data onto the control action is indeed
advisable in real-world problems, as modeling usually takes about 75% of the time devoted to a control project
[17], and accurate modeling for control requires significant time and several (costly) technical expertises, e.g., in the
process domain and in the statistical tools for system identification. Additionally, accurate modeling may go well
beyond what is strictly necessary for control purposes only, since often times rather limited knowledge of the system
dynamics may be required to achieve the desired control objectives [21].

Early attempts in this direction date back to 1942, with the first studies by Ziegler and Nichols about PID auto-
tuning [30]. More sophisticated, optimization based, approaches have been derived since then for fixed-order controller
tuning, leading to a portfolio of techniques suitable for di↵erent problem formulations, see, e.g., [14,6,15,22]. However,
it is only recently that, with the availability of large datasets and unparalleled computing power, such a paradigm
shift in control design could be extended to more complex control architectures. For instance in the deterministic
setting, by relying on the so-called “fundamental lemma” [28], model equations can be replaced by suitable data-based
constraints 1 in the formulation of a Model Predictive Control (MPC) schemes, as discussed e.g. in [11] or [5]. Such

1
Such constraints can also be seen as an implicit, nonparametric, mapping of the input/output relationships. According to

this interpretation, some researchers legitimately prefer to denote the strategies described herein as “indirect”. For this reason,

we will simply talk about data-driven predictive control from now on.
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Simulation results

parameter. At the same time, we show the computational
advantages gained by using the Bayesian-DDPC scheme,
especially with respect to the DeePC scheme with “con-
sistency regularization”.

——————– Qui sotto ha scritto Marco

In this direction, we adopt the standard single-input,
single-output, 4-th order, linear time-invariant system in
[13] whose state-space realization can be yielded by

(A,B) =

0

BBBBB@

2

666664

1.4183 �1.5894 1.3161 �0.8864

1 0 0 0

0 1 0 0

0 0 1 0

3

777775
,

2

666664

1

0

0

0

3

777775

1

CCCCCA
;

(C,D) =
⇣h

0 0 0.2826 0.5067
i
, 0
⌘
.

Similarly to [11], we generate noise-free input/output
time series with a length ofNdata = 250. A randomGaus-
sian input with a unitary variance (denoted with c = 0)
and a colored input 5 (c = 1) are applied for this pur-
pose. In particular, accounting for this kind of data set,
we generate nMC = 100 distinct sets of noisy data with a
signal-to-noise ratio (SNR) of 6 dB, 13 dB and 20 dB for
each type of noisy input c = 0, 1. These data sets are em-
ployed as training data for the closed-loop experiments,
which are executed in the presence of noise. Specifically,
for the choice c = 0, white noise with variance �

2
0 de-

pending on the SNR level is added to the output obtaining
the innovation form ⌃0 = (A,B,C), where K is absent
in the latter tuple because it is zero. On the other hand,
for the choice c = 1, colored noise with state matrix

K =
h
0.1784 �0.6523 0.2020 2.2910

i>

and variance �
2
1 depending on the SNR level is

added to the output obtaining the innovation form
⌃1 = (A,B,C,K). Consequently, for each of the six
scenarios determined by the noise color c and the SNR
level we estimate the model order ⇢̂ of ⌃c at each Monte
Carlo run. The distributions of the latter quantity are
depicted in Fig. 1. Subsequently the noise is incorporated
into the feedback loop.

The experimental setup is analogous to that introduced in
[7].We set the output reference yr(t) = sin(5⇡t/(T+Tv�
1)), where the T = 20 and Tv = 50 denote the prediction
horizon and the number of feedback steps, respectively.

5 This is obtained by filtering unitary white noise with
a low-pass filter having cut-o↵ angular frequency equal to
1.8 rad/s.

Also, the scalar index

Ja = T
�1
v

Tv�1X

t=0

ky(t)� yr(t)k2Q + ku(t)� ur(t)k2R (60)

is adopted to evaluate the closed-loop performance of the
DDPC algorithms involved, where it is set ur(t) ⌘ 0,
(Q,R) = (qIp, rIm), with (q, r) = (1, 5 · 10�6) and m =
p = 1. The subscript a is used to address di↵erent kinds
of DDPC approaches:

• a = 1: o✏ine scheme (25) in [11];
• a = 2: online and o✏ine schemes regularizing the

squared norm of �2 (see [7]);
• a = 3: online and o✏ine schemes regularizing the

squared norm of �3 (see [7]);
• a = 23: o✏ine scheme that jointly regularizes both

the squared norms of �2 and �3 (see [5]);
• a = O: online scheme based on the PBSIDopt algo-

rithm [9];
• a = S: online scheme derived in riferimento a

sezioni precedenti, forse la 6.1?

Moreover, to provide a benchmark for the closed-loop per-
formance we account for an oracle based on the well-
known Kalman filter. Such a predictive scheme exploits
the truemodel parameters, and we denote its performance
through JKF .
The online tuning strategies for �2, �3 (i.e. a = 2 and
a = 3) are compared to the benchmark given by an ora-
cle that exploits an estimate of the closed-loop cost. Such
an oracle is also provided for a = 1 and a = 23 for
the sake of completeness. In particular, these costs are
computed in an o✏ine fashion by taking �2 and/or �3

ranging on a logarithmically spaced grid G
�
a of |G�

a | =
202 fixed points for �2 ⇢ [10�3

, 101] [ {0,+1} and
�3 ⇢ [10�7

, 10�3] [ {0,+1}. Similarly, for a = 1, the
penalty parameters �1 and �2 are chosen over a grid G

�
a

of |G�
a | = 11 fixed points for �1 ⇢ [10�4

, 102] [ {0,+1}
and �2 ⇢ [10�6

, 10�2] [ {0}.

Fig. 2 reports on the numerical results obtained in this
simulation campaign. From the boxplot illustrating the
distributions of the closed-loop performance index, it can
be appreciated that, in case of white noise scenario (c =
0), all the devised methods exhibit a similar performance
for any selected value of SNR, as expected. Clearly, for the
o✏ine strategies the indexes J̄a tend to be generally lower
those referring to the online strategies Ĵa, as the latter
leverage more practical algorithms that do not search the
whole hyper-parameter space.
On the other hand, considering the colored noise scenario
(c = 1), much more variegate and deeper observations
can be made.

• Both o✏ine and online approaches based on the tun-
ing of the sole �3 are evidently not reliable. Indeed,
the index J̄3 appears to be characterized by much
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(a) c = 0, SNR = 6 dB (b) c = 1, SNR = 6 dB

(c) c = 0, SNR = 13 dB (d) c = 1, SNR = 13 dB

(e) c = 0, SNR = 20 dB (f) c = 1, SNR = 20 dB

Fig. 2. Distributions of the closed-loop performance (60) for the systems ⌃c, c = 0, 1, over 100 Monte Carlo runs. Charts in
(a)-(c) and (d)-(f) respectively report the performance of ⌃0 and ⌃1. Costs with bars refer to an o✏ine tuning, whereas costs
with hats refer to online (feasible) strategies.
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(c) c = 0, SNR = 13 dB (d) c = 1, SNR = 13 dB

(e) c = 0, SNR = 20 dB (f) c = 1, SNR = 20 dB

Fig. 2. Distributions of the closed-loop performance (60) for the systems ⌃c, c = 0, 1, over 100 Monte Carlo runs. Charts in
(a)-(c) and (d)-(f) respectively report the performance of ⌃0 and ⌃1. Costs with bars refer to an o✏ine tuning, whereas costs
with hats refer to online (feasible) strategies.
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(a) c = 0, SNR = 6 dB (b) c = 1, SNR = 6 dB

(c) c = 0, SNR = 13 dB (d) c = 1, SNR = 13 dB

(e) c = 0, SNR = 20 dB (f) c = 1, SNR = 20 dB

Fig. 1. Distributions of the estimated model order ⇢̂ over 100 Monte Carlo runs.

a average execution time ± std. dev. [ms]

KF 5.83 ± 0.75

2, 3 (parallel search on 2 linear grids of length 202 + 2 o✏ine runs) 492.23± 74.67

23 (parallel search on a 202 ⇥ 202 squared grid + o✏ine run) (35.35± 6.08) · 103

1 (parallel search on an 11 ⇥ 11 squared grid + o✏ine run) (862.33± 131.20) · 103

O (online run) 23.10± 6.06

S (online run) 9.10± 1.70

2 (online run) 344.07± 120.33

3 (online run) 412.62± 195.58

Table 1
Average execution times in [ms] of the closed-loop cost performance index computations on MATLAB®. For the computation
of J1 the function fmincon has been used with MaxFunctionEvaluations = 100, ConstraintTolerance = 10�4 and exploiting
the gradient and Hessian functions of the objective whenever �1 < +1.

[7] V. Breschi, M. Fabris, S. Formentin, and A. Chiuso. Uncertainty-aware data-driven predictive control in a
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(a) c = 0, SNR = 6 dB (b) c = 1, SNR = 6 dB

(c) c = 0, SNR = 13 dB (d) c = 1, SNR = 13 dB

(e) c = 0, SNR = 20 dB (f) c = 1, SNR = 20 dB

Fig. 1. Distributions of the estimated model order ⇢̂ over 100 Monte Carlo runs.

a average execution time ± std. dev. [ms]

KF ±
2 (o↵) ±
3 (o↵) ±
23 (o↵) ±
1 (o↵) ±
O (on) ±
S (on) ±
2 (on) ±
3 (on) ±
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Average execution times in [ms] of the closed-loop cost performance index computations on MATLAB®. For the computation
of J1 the function fmincon has been used with MaxFunctionEvaluations = 100, ConstraintTolerance = 10�4 and exploiting
the gradient and Hessian functions of the objective whenever �1 < +1.
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True System: Double 
Integrator, stabilized with 
proportional state feedback to 
gather closed loop data

Simulation results – Closed Loop Data
[ Work in progress – with K. Moffat and F. Dörfler]
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2. Same (approx) su�cient statistic for VARX model of order ⇢

3. To be statistically e�cient the decision (optimal control design) should be function of D
through a su�cient statistic T := T (D).

= No more, no less

Program for the second part:

1. Introduce Data Driven Predictive Control schemes (DeePC, � �DDPC etc..)
using the language of SubspaceID

2. Exploit results from Subspace ID to rewrite in terms of estimated ARX model

3. Compute the error in the output prediction, discuss its quantification and
its implications for design of regularization

Order (= state dimension) NOT KNOWN

v

TAKE HOME

• Direct Data Driven Predictive Control (Hankel Data Matrices) = VARX
modeling + Reg. Optimization

• (Approx) Su�cient Statistics Y⇢+1Z>

P , ZPZ>

P

(No reason to use Page matrices or similar)

• Closed form Optimal Regularization (no tuning): quadratic in uf

• Bayesian framework allows to embed prior info (stability/further reg-
ularization etc.)

Predictor Errors with data matrices

ŷd
f
:= ŶF↵ = YF⇧↵ = L31�1 + L32�2
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ŷd
f

·
= yd

f
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