Linear System Identification: Sample Complexity Lower Bounds and Optimal Algorithms

Yassir Jedra and Alexandre Proutiere

KTH Royal Institute of Technology

Talk is mainly based on parts of Yassir's thesis:

- Sample Complexity Lower Bounds for Linear System Identification
 CDC, 2019
- Finite-time Identification of Stable Linear Systems:
 Optimality of the Least Squares Estimator
 CDC, 2020
- Finite-time Identification of Linear Systems:
 Fundamental Limits and Optimal Algorithms
 IEEE TAC, 2023
- Minimal Expected Regret in Linear Quadratic Control AISTATs, 2022

Linear System Identification

Linear time invariant systems. $x_{t+1} = Ax_t + Bu_t + \eta_{t+1}$

Unknown $A \in \mathbb{R}^{d \times d}$, known $B \in \mathbb{R}^{d \times m}$ $(\eta_t)_{t \geq 1}$ i.i.d. $\sim \mathcal{N}(0, I_d)$ or i.i.d. isotropic¹ vectors with independent coordinates of ψ_2 -norm² less than K.



From the observation of a finite system trajectory, learn ${\cal A}$ with minimal error. The trajectory can be **uncontrolled** or **controlled**.

¹Isotropic means $\mathbb{E}[\eta_t \eta_t^{\top}] = I_d$.

 $^{\|\}eta_t\|_{\psi_2} = \inf\{K \ge 0 : \mathbb{E}[\exp(\eta_t^2/K^2)] \le 2\}$

Fixed budget vs. fixed confidence settings

Fixed budget. Fixed trajectory length.

- Algorithm: an adaptive control policy $^3+$ an estimator \hat{A}_t ;
- Sample complexity $\tau_A := \inf\{t' : \forall t \geq t', \mathbb{P}_A(\|\hat{A}_t A\| > \varepsilon) < \delta\};$
- Objective: devise an algorithm with minimal sample complexity.

Fixed confidence. Target accuracy and confidence levels (ε, δ) .

- Algorithm: an adaptive control policy $^3+$ a stopping rule + an estimator \hat{A} ;
- Sample complexity $\mathbb{E}_A[\tau_A]$ where τ_A is the time when the algorithm stops;
- Objective: devise an (ε, δ) -PAC algorithm with minimal sample complexity $\mathbb{E}_A[\tau_A]$; (ε, δ) -PAC: $\mathbb{P}_A(\|\hat{A} A\| > \varepsilon) < \delta$.

³Only in controlled / active learning scenario.

Minimax vs instance-specific guarantees

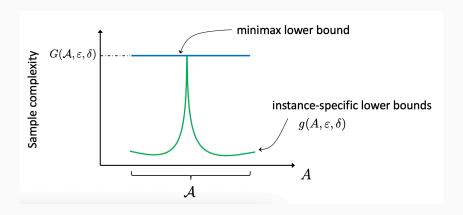
Minimax sample complexity. $G(\mathcal{A}, \varepsilon, \delta) = \inf_{\text{algo}} \sup_{A \in \mathcal{A}} \tau_A$ where \mathcal{A} is a wide set of possible systems.

Minimax optimality: an algorithm with $\tau_A \leq G(\mathcal{A}, \varepsilon, \delta)$ for all $A \in \mathcal{A}$.

Instance-specific sample complexity. $g(A, \varepsilon, \delta) = \inf_{\mathrm{algo} \in \Pi} \tau_A$ where Π is a wide set of (reasonably adaptive) algorithms.

Instance-specific optimality: an algorithm in Π with $\tau_A \leq g(A, \varepsilon, \delta)$ for all A.

Learning: be specific!



Minimax lower bounds come from wacky and meaningless examples.

Minimax optimality just states that the algorithm performs ok in the worst possible system, it does not say whether the algorithm *learns* and *adapts* to the system.

Research agenda

Part I. Derive instance-specific sample complexity lower bounds for system identification How do they depend on A? How do they scale in ε , δ , d, m?

Part II. Devise instance-specific optimal algorithm Is the LSE optimal?

What stopping rule works in the fixed confidence setting?

How to perform optimal exploration/excitation?

Related work – Uncontrolled systems

Control community. Mostly asymptotic results, e.g. **Ljung**'76, LSE and Prediction error methods. For finite time analysis, see **Weyer et al.**'96, **Tikku-Poola**'93, **Daleh**'93, etc.

Learning approach. (Given accuracy and confidence levels ε,δ)

- Faradonbeh-Tewari-Michailidis'18: $au_A pprox rac{1}{arepsilon^2} \log(1/\delta)^3 C(A) d \log(d)$
- Simchowitz-Mania-Tu-Jordan-Recht'18:

$$\tau_A \approx \frac{1}{\lambda_{\min}(\Gamma_k(A))\varepsilon^2} (d\log(d/\delta) + \log\det(\Gamma_t(A)\Gamma_k(A)^{-1}))$$

if (τ_A, k) satisfies:

$$\tau_A \ge ck(d\log(d/\delta) + \log\det(\Gamma_t(A)\Gamma_k(A)^{-1}))$$

• Sarkar-Rakhlin'19: $au_A pprox C(A,d) rac{1}{arepsilon^2} \log(rac{1}{\delta})$

We aim for an optimal and explicit dependence in δ , ε , and A.

Related work – Controlled systems

Control community. **Mehra**'76, **Goodwin-Payne**'77, **Jansson-Hjalmarsson**'05, **Rojas et al.**'07, etc.

Learning approach. (Given accuracy and confidence levels ε, δ)

• Wagenmaker-Jamieson'20: more later on this paper ...

Objectives of this talk

Simplifying (as much as possible) and explaining learning tools towards a finite-time analysis of linear sysID

- 1. Lower bounds (information theory)
- 2. Performance analysis of algorithms (concentration of random vectors and matrices)

Part I. Instance-specific sample complexity lower bounds

A generic inference problem

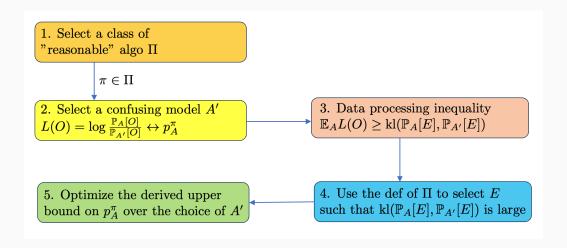
Familly of stochastic generative parametrized models $\mathcal A$ Observations O sampled under some unknown model $A\in\mathcal A$ Inference algorithm $\pi:O\mapsto \hat A$, performance metric p_A^π

What is the fundamental inference limit $\sup_{\pi} p_A^{\pi}$?

Example 1:
$$\mathcal{A} = \mathbb{R}^{d \times d}$$
, $O = (x_0, \dots, x_t)$ where $x_{t+1} = Ax_t + \eta_{t+1}$, $p_A^{\pi} = \tau_A^{-1}$ (sample complexity to get $\mathbb{P}_A(\|\hat{A} - A\| > \varepsilon) < \delta$).

Example 2:
$$A = \mathbb{R}^{d \times d}$$
, $O = (x_0, u_0, \dots, u_{t-1}, x_t)$ where $x_{t+a} = Ax_t + Bu_t + \eta_{t+1}$. The adaptive control $(u_t)_{t \geq 0}$, adapted to the natural filtration, can be part of π .

The change-of-measure argument



From change-of-measure to optimal algorithms: success stories

Lai-Robbins'85: Regret minimization in stochastic Multi-Armed Bandits

Recent success stories:

- Regret in infinite bandits (NIPS 2013)
- Regret in unimodal bandits (ICML 2014)
- Regret in Lipschitz bandits (COLT 2014)
- Regret in combinatorial bandits (NIPS 2015, NeurIPS 2023)
- Clustering in SBM (COLT 2014, NIPS 2014, NIPS 2015, NIPS 2016, NeurIPS 2019)
- Regret in bandits with generic structure (NIPS 2017)
- Regret in MDP with generic structure (NeurIPS 2018)
- Best arm identification in linear bandits (NeurIPS 2020)
- Regret in muti-agent bandits (AISTATs 2020)
- Best arm identification in structured bandits (NeurIPS 2021)
- Best policy identification in MDPs (ICML 2021, NeurIPS 2021)
- System identification in linear systems (IEEE TAC 2023)
- Networked bandits (ICML 2023, NeurIPS 2023)

Uncontrolled systems: $x_{t+1} = Ax_t + \eta_{t+1}$; fixed budget

Class Π of reasonable algorithms. An algorithm is (ε, δ) -locally stable in A if there exists τ such that $\forall t \geq \tau$ and $\forall A' \in B(A, 6\sqrt{2}\varepsilon)$, $\mathbb{P}_{A'}[\|\hat{A}_t - A'\| \leq \varepsilon] \geq 1 - \delta$.

Finite-time gramian. For any $t \geq 0$, $\Gamma_t(A) = \sum_{k=0}^t A^k(A^k)^{\top}$

Theorem 1 For any A, for all $\varepsilon > 0$, $\delta \in (0,1)$, the sample complexity τ_A of any algorithm (ε, δ) -locally stable in A satisfies:

$$\lambda_{\min}\Big(\sum_{s=1}^{\tau_A-1} \Gamma_{s-1}(A)\Big) \ge \frac{1}{2\epsilon^2} \log(\frac{1}{2.4\delta}).$$

Uncontrolled systems: $x_{t+1} = Ax_t + \eta_{t+1}$; fixed budget

Class Π of reasonable algorithms. An algorithm is (ε, δ) -locally stable in A if there exists τ such that $\forall t \geq \tau$ and $\forall A' \in B(A, 6\sqrt{2}\varepsilon)$, $\mathbb{P}_{A'}[\|\hat{A}_t - A'\| \leq \varepsilon] \geq 1 - \delta$.

Finite-time gramian. For any $t \geq 0$, $\Gamma_t(A) = \sum_{k=0}^t A^k (A^k)^{\top}$

Theorem 2 For any stable A, for all $\varepsilon \in (0, \|\Gamma_{\infty}(A)\|^{-3}/12)$, $\delta \in (0, 1/2)$, under any algorithm (ε, δ) -locally stable in A, we have: for c > 0 (universal constant)

$$\lambda_{\min}\left(\sum_{s=1}^{\tau_A-1} \Gamma_{s-1}(A)\right) \ge \frac{c}{\epsilon^2} \left(\log(\frac{1}{\delta}) + d\right).$$

Uncontrolled systems: $x_{t+1} = Ax_t + \eta_{t+1}$; fixed budget

A looser but explicit lower bound (exact for scalar systems).

$$\phi_a(t) = \sum_{s=1}^{t-1} \sum_{k=0}^{s-1} a^{2k} = \begin{cases} t-1 & \text{if } a=0, \\ \frac{a^{2t} + t(1-a^2) - 1}{(1-a^2)^2} & \text{if } a \neq 1, \\ \frac{t(t-1)}{2} & \text{if } a = 1. \end{cases}$$

For any estimator (ε, δ) -locally stable in A: $\phi_{|\lambda_d(A)|}(\tau_A) \geq \frac{c}{\epsilon^2}(\log(\frac{1}{\delta}) + d)$, where $\lambda_d(A)$ is the complex eigenvalue of A with smallest amplitude.

Proof of Theorem 1 (1/2)

- 1. Let π be (ε, δ) -locally stable in A, and let τ_A denote its sample complexity.
- 2. Select a confusing model A'. Let O denote the observation up to time τ_A , then

$$\mathbb{E}_A \left[\ln \frac{\mathbb{P}_A[O]}{\mathbb{P}_{A'}[O]} \right] = \frac{1}{2} \operatorname{tr} \left((A - A')^\top (A - A') \sum_{s=1}^{\tau_A - 1} \underbrace{\mathbb{E}_A \left[x_s x_s^\top \right]}_{=\Gamma_{s-1}(A)} \right).$$

(here τ_A is the performance metric – sample complexity)

3. Data processing inequality. For any event E O-measurable,

$$\frac{1}{2} \text{tr} \Big((A - A')^{\top} (A - A') \sum_{s=1}^{\tau_A - 1} \Gamma_{s-1}(A) \Big) \ge \text{kl}(\mathbb{P}_A[E], \mathbb{P}_{A'}[E]).$$

Proof of Theorem 1(2/2)

4. Select the event E. For any $\forall A'$: $2\varepsilon < \|A' - A\| < 6\sqrt{2}\varepsilon$, define $E = \{\|\hat{A} - A\| \le \varepsilon\}$. Since π is (ε, δ) -locally stable in A, $\mathbb{P}_A[E] \ge 1 - \delta$ and $\mathbb{P}_{A'}[E] \le \delta$. Thus,

$$\operatorname{tr}\left((A - A')^{\top}(A - A') \sum_{s=1}^{\tau_A - 1} \Gamma_{s-1}(A)\right) \ge 2\operatorname{kl}(1 - \delta, \delta).$$

5. Optimizing over A' such that $2\varepsilon < \|A' - A\| < 6\sqrt{2}\varepsilon$. $M = (A - A')^{\top}(A - A')$.

$$\min_{M \succeq 0} \operatorname{tr}\left(\sum_{s=1}^{\tau_A} \Gamma_{s-1}(A)M\right) \tag{1}$$

s.t.
$$\sigma_{\max}(M) \ge 4\epsilon^2$$

The value of the optimization problem is: $4\varepsilon^2 \lambda_{\min} \left(\sum_{s=1}^{\tau_A - 1} \Gamma_{s-1}(A) \right)$.

Proof of Theorem 2 (1/2)

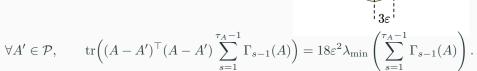
We need more confusing models! Let us look at the optimization problem (1) but with constraints $||M|| \ge 18\varepsilon^2$. Its solution set is of the form:

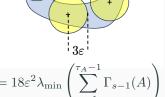
$$\mathcal{C}^{\star} = \{ A + 3\sqrt{2}\varepsilon v u^{\top} : v \in S^{d-1} \},$$

where u is the eivenvector corresponding to the smallest eigenvalue of $\sum_{s=1}^{\tau_A-1} \Gamma_{s-1}(A)$.

Based on results on the unit sphere (Wyner'67), there is a packing $\mathcal{P} \subset \mathcal{C}^*$ such that:

- (i) for all $A' \in \mathcal{P}$, $||A' A|| = 3\varepsilon$;
- (ii) for all $A_1, A_2 \in \mathcal{P}$, $3\varepsilon \le ||A_1 A_2|| < 6\sqrt{2}\varepsilon$:
- (iii) $|\mathcal{P}| \ge \left(\frac{2}{\sqrt{3}}\right)^d$.





Proof of Theorem 2 (2/2)

3. Data processing inequality. $\mathcal{P} = \{A_1, \dots, A_{|\mathcal{P}|}\}$. For all disjoint events E_i O-measurable:

$$\frac{1}{|\mathcal{P}|} \sum_{i=1}^{|\mathcal{P}|} \operatorname{tr} \left((A_i - A)^\top (A_i - A) \sum_{s=0}^{\tau_A - 2} \Gamma_s(A_i) \right) \ge \operatorname{kl} \left(\frac{1}{|\mathcal{P}|} \sum_{i=1}^{|\mathcal{P}|} \mathbb{P}_{A_i}(E_i), \; \frac{\mathbb{P}_A \left(\bigcup_{i=1}^{|\mathcal{P}|} E_i \right)}{|\mathcal{P}|} \right).$$

4. Let the events be $E_i = \{\|A_i - \hat{A}\| \le \varepsilon\}$. Since π is (ε, δ) -locally stable in A,

$$\frac{1}{|\mathcal{P}|} \sum_{i=1}^{|\mathcal{P}|} \operatorname{tr} \left((A_i - A)^\top (A_i - A) \sum_{s=0}^{\tau_A - 2} \Gamma_s(A_i) \right) \ge 2 \log(\frac{|\mathcal{P}|}{\delta}) \sim d + \log(1/\delta).$$

5. From $\Gamma_s(A_i)$ to $\Gamma_s(A)$. Perturbation of the gramians:

Proposition. Let A be stable. For all matrix Δ such that $4\|\Delta\| \leq \|\Gamma_{\infty}(A)\|^{-3/2}$, for all $s \geq 0$,

$$\|\Gamma_s(A+\Delta) - \Gamma_s(A)\| \le 16\|\Delta\| \|\Gamma_\infty(A)\|^3.$$

Uncontrolled systems: $x_{t+1} = Ax_t + \eta_{t+1}$; fixed confidence

An algorithm (a stopping time τ and an estimator) is (ε, δ) -PAC if for all A, it stops almost surely in finite time, and $\mathbb{P}_A[\|\hat{A}_{\tau} - A\| \leq \varepsilon] \geq 1 - \delta$.

Theorem 3 The sample complexity of an (ε, δ) -PACs satisfies:

$$\lim_{\varepsilon,\delta\to 0} \frac{2\varepsilon^2 \lambda_{\min} \Big(\sum_{s=1}^{\mathbb{E}_A[\tau]-1} \Gamma_{s-1}(A) \Big)}{\log(1/3\delta)} \geq 1.$$

Why only asymptotic? Change-of-measure yields $\lambda_{\min}(\mathbb{E}_A[\sum_{s=0}^{\tau-1}x_sx_s^{\top})\geq \frac{1}{2\varepsilon^2}\log(1/3\delta)$. Wald's lemma does not work for Markov processes, but asymptotically as $\mathbb{E}_A[\tau]$ grows large (Moustakides'99).

Controlled systems: $x_{t+1} = Ax_t + Bu_t + \eta_{t+1}$; fixed budget

Class Π of reasonable algorithms. An algorithm is (ε, δ) -locally stable in A if there exists τ such that $\forall t \geq \tau$ and $\forall A' \in B(A, 6\sqrt{2}\varepsilon), \, \mathbb{P}_{A'}[\|\hat{A}_t - A'\| \leq \varepsilon] \geq 1 - \delta.$

Finite-time control gramians. for any $t \geq 0$, $G^u_t(A,B) = \sum_{s=0}^{t-1} x^u_s(x^u_s)^\top$ where $x^u_t = A^{t-1}Bu_0 + \ldots + ABu_{t-2} + Bu_{t-1}$.

Theorem 4^a For any A, for all $\varepsilon > 0$, $\delta \in (0,1)$, the sample complexity τ_A of any algorithm (ε, δ) -locally stable in A satisfies:

$$\sup_{u \in \mathcal{U}} \lambda_{\min} \left(G_{\tau_A - 1}^u(A, B) + \sum_{s=1}^{\tau_A - 1} \Gamma_{s-1}(A) \right) \ge \frac{1}{4\epsilon^2} \log(\frac{1}{2.4\delta}).$$

^aAdapted from Wagenmaker-Jamieson'20.

Controlled systems: two remarks

- 1. The lower bound specifies the optimal excitation! The deterministic control achieving the \sup is optimal. But it depends on (A,B).
- **2. Dimension-dependent lower bound.** Should the power of the control input be bounded, perturbation bounds of $G_t^u(A,B)$ may be established. Leading to:

Let \mathcal{U}_{γ} denote the set of control signals with power bounded by γ . For any stable A, for all $\varepsilon>0$, $\delta\in(0,1)$, under any algorithm (ε,δ) -locally stable in A, we have: for some c>0 (universal constant)

$$\sup_{u \in \mathcal{U}_{\gamma}} \lambda_{\min} \Big(G^u_{\tau_A - 1}(A, B) + \sum_{s = 1}^{\tau_A - 1} \Gamma_{s - 1}(A) \Big) \geq \frac{c}{\epsilon^2} \left(\log(\frac{1}{\delta}) + d \right).$$

Part II. Instance-specific optimal algorithms
A. Uncontrolled systems / fixed budget

Least Squares Estimator

LSE:
$$A_t = \underset{A \in \mathbb{R}^{d \times d}}{\arg\min} \sum_{s=0}^{t} \|x_{s+1} - Ax_s\|^2 = \left(\sum_{s=0}^{t} x_{s+1} x_s^{\top}\right) \left(\sum_{s=0}^{t} x_s x_s^{\top}\right)^{\dagger}$$

Estimation error:
$$A_t - A = \left(\sum_{s=0}^t \eta_{s+1} x_s^\top\right) \left(\sum_{s=0}^t x_s x_s^\top\right)^\top$$

Truncated block Toeplitz matrix:

$$\Gamma = \begin{bmatrix} I_d & & & & & \\ A & I_d & & O & & \\ & & \ddots & & & \\ A^{t-2} & \dots & A & I_d & & \\ A^{t-1} & \dots & \dots & A & I_d \end{bmatrix}$$

When
$$\rho(A) < 1$$
, $\|\Gamma\| \le \mathcal{J}(A) = \sum_{s \ge 0} \|A^s\|$.

Optimality of the LSE

Theorem 5 Let A be stable. For any $0 < \delta < 1$, and any $\varepsilon > 0$, we have: $\mathbb{P}(\|A_t - A\| > \varepsilon) < \delta$, as long as the following condition holds

$$\lambda_{\min}\left(\sum_{s=0}^{t-1} \Gamma_s(A)\right) \ge c \max\left\{\frac{1}{\varepsilon^2}, \|\Gamma\|^2\right\} \left(\log(\frac{1}{\delta}) + d\right),$$

for some universal constant c.

For ε small enough, the LSE is optimal.

This proves a conjecture in **Simchowitz-Mania-Tu-Jordan-Recht**'18.

Corollary. For any $\delta \in (0,1)$ and ε small enough, the sample complexity of the LSE satisfies:

$$\tau_A \le \frac{1}{\lambda_{\min}(\Gamma_{\infty}(A)) \varepsilon^2} \left(\log(\frac{1}{\delta}) + d \right).$$

Performance of the LSE for marginally stable systems

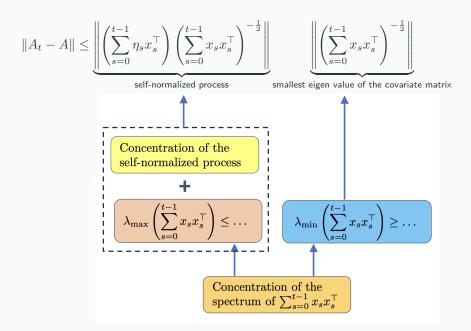
Jordan decomposition of A: SJS^{-1} , $C_A = ||S|| ||S^{-1}||$, p size of the largest block of J.

Theorem 6 Let A be marginally stable ($\rho(A) \le 1$). For any $0 < \delta < 1$, and any $\varepsilon > 0$, the sample complexity of the LSE satisfies:

$$\tau_A \le \frac{c}{\varepsilon^2} \left(\log(\frac{1}{\delta}) + d\log(C_A) + dp\log(\frac{dp}{\varepsilon}) \right)$$

for some universal constant c.

Main ingredients of the proof



Spectrum of the covariates matrix

Theorem 7 Let
$$\varepsilon > 0$$
. Let $M = \left(\sum_{s=0}^{t-1} \Gamma_s(A)\right)^{-\frac{1}{2}}$ and $X^{\top} = (x_1, \dots, x_t)$. Then:

$$\frac{1}{\|M\|}(1 - K^2 \varepsilon) \le s_d(X) \le \dots \le s_1(X) \le (1 + K^2 \varepsilon) \frac{1}{s_d(M)}$$

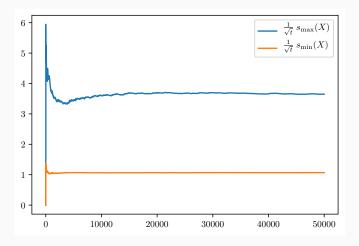
holds with probability at least

$$1 - 2 \exp\left(-c_1 \varepsilon^2 \frac{1}{\|M\|^2 \|\Gamma\|^2} + c_2 d\right),$$

for some universal constants $c_1, c_2 > 0$.

Concentration of the spectrum of the covariates matrix

Both $s_1(M)$ and $s_d(M)$ scale as $1/\sqrt{t}$, hence all singular values of the covariates matrix X scale as \sqrt{t} .



Proof of Theorem 7

- **1. Approximate isometries.** Assume that $\|(XM)^{\top}XM I_d\| \leq \max(\varepsilon, \varepsilon^2)$. Then $\frac{1}{\varepsilon_s(M)}(1-\varepsilon) \leq s_d(X) \leq \cdots \leq s_1(X) \leq (1+\varepsilon)\frac{1}{\varepsilon_s(M)}$.
- 2. Concentration on the set of isometries.

Lemma 1 $\|(XM)^{\top}XM - I_d\| > \max(\varepsilon, \varepsilon^2)K^2$ holds with probability at most

$$2\exp\left(-c_1\varepsilon^2\frac{1}{\|M\|^2\|\Gamma\|^2}+c_2d\right)$$

for some positive absolute constants c_1, c_2 .

3. Concluding the proof. Combine the two aforementioned results.

Proof of Lemma 1 (1/2)

1. $\|(XM)^{\top}XM - I_d\|$ as the supremum of a chaos process.

A chaos process is $(\xi^\top W \xi)_{W \in \mathcal{W}}$ with W is deterministic in $\mathbb{R}^{d \times d}$, ξ is random with independent coordinates. If ξ is isotropic, $\mathbb{E}[\xi^\top W \xi] = \mathrm{tr} W$.

Here $W = \Gamma^{\top} \sigma_{Mu} \sigma_{Mu}^{\top} \Gamma$. Specifically,

$$\|(XM)^{\top}XM - I_d\| = \sup_{u \in S^{d-1}} |\|\sigma_{Mu}^{\top}\Gamma\xi\|_2^2 - 1|.$$

where $\boldsymbol{\xi}^{\top} = (\eta_2^{\top}, \dots, \eta_{t+1}^{\top})$, and

$$\sigma_{Mu} = \begin{bmatrix} Mu & & O \\ & Mu & \\ & & \ddots & \\ O & & Mu \end{bmatrix},$$

Proof of Lemma 1 (2/2)

2. Hanson-Wright inequality. Let $B \in \mathbb{R}^{m \times d}$, and $\xi \in \mathbb{R}^d$ be a random vector with zero-mean, unit-variance, sub-gaussian independent coordinates. Then for all $\varepsilon > 0$,

$$\mathbb{P}\left[\left|\|B\xi\|_2^2 - \|B\|_F^2\right| > \varepsilon \|B\|_F^2\right] \le 2 \exp\left(-c \min\left(\frac{\varepsilon^2}{K^4}, \frac{\varepsilon}{K^2}\right) \frac{\|B\|_F^2}{\|B\|^2}\right),$$

where c is an absolute positive constant and $K = \|\xi\|_{\psi_2}$.

Applying it to $B = \Gamma^{\top} \sigma_{Mu}$, one gets $\left| \|\sigma_{Mu}^{\top} \Gamma \xi\|_2^2 - 1 \right| > \rho$ holds with probability at most

$$2\exp\left(-c\min\left(\frac{\rho^2}{K^4},\frac{\rho}{K^2}\right)\frac{1}{\|M\|^2\|\Gamma\|^2}\right).$$

3. ϵ -net argument. The concentration of the supremum over u is obtained using classical ϵ -net arguments.

Proof of Theorem 6 (1/3)

1. Upper bound on $\lambda_{\max}(\sum_{s=0}^{t-1} x_s x_s^{\top})$. We establish that: $\mathcal{J}_t(A) = \sum_{s=0}^t \|A^s\| \leq (t+1)^p C_A$, and that

$$\lambda_{\max}\left(\sum_{s=0}^{t-1}\Gamma_s(A)\right) \le (t+1)^{2p}C_A^2.$$

We conclude using the concentration result on the spectrum of $\sum_{s=0}^{t-1} x_s x_s^{\top}$.

2. Lower bound on $\lambda_{\min}(\sum_{s=0}^{t-1} x_s x_s^{\top})$. A generic decomposition (works for controlled systems): if $x_t = y_t + z_t$, for all $\lambda > 0$:

$$\sum_{s=0}^{t} x_s x_s^{\top} \succeq \sum_{s=0}^{t} z_s z_s^{\top} - \left(\sum_{s=0}^{t} y_s z_s^{\top}\right)^{\top} \left(\sum_{s=0}^{t} y_t y_t^{\top} + \lambda I_d\right)^{-1} \left(\sum_{s=0}^{t} y_s z_s^{\top}\right) - \lambda I_d.$$

Use concentration of self-normalized processes⁴ to upper bound the middle term.

⁴Peña-Lai-Shao'09

Proof of Theorem 6 (2/3)

Apply it to $y_s = Ax_{s-1}$ and $z_s = \eta_s$ to get:

$$\mathbb{P}\left(\lambda_{\min}\left(\sum_{s=0}^{t} x_s x_s^{\top}\right) \gtrsim t - d\log\left(\frac{\lambda_{\max}\left(\sum_{s=0}^{t-1} (Ax_s)(Ax_s)^{\top}\right)}{\lambda} + 1\right) - \log(1/\delta) - \lambda\right) \ge 1 - \delta$$

provided that the following condition holds $T \gtrsim d + \log(1/\delta)$.

+ upper bound on $\lambda_{\max}(\sum_{s=0}^{t-1} x_s x_s^{\top})$ yields:

When
$$t \gtrsim d\log\left(C_A^5 T^{3p}\right) + \log(1/\delta), \qquad \mathbb{P}\left(\lambda_{\min}\left(\sum_{t=0}^T x_s x_s^\top\right) \gtrsim t\right) \geq 1 - \delta$$

3. Self-normalized process.

$$\mathbb{P}\left[\left\|\left(\sum_{s=0}^{t} \eta_s x_s^{\top}\right)^{\dagger} \left(\sum_{s=0}^{t} x_s x_s^{\top} + \Lambda\right)^{-1/2}\right\|^2 \lesssim \log\left(\frac{\det^{1/2}(\sum_{s=0}^{t} x_s x_s^{\top} + \Lambda)}{\det^{1/2}(\Lambda)\delta}\right) + d\right] \ge 1 - \delta.$$

+ upper bound on $\lambda_{\max}(\sum_{s=0}^t x_s x_s^\top)$ to control $\det(\sum_{s=0}^t x_s x_s^\top + \Lambda)$.

Proof of Theorem 6 (3/3)

4. Putting things together. We obtain:

$$||A_t - A||^2 \lesssim \frac{d \log(C_A^5(t+1)^{3p} + t) + d + \log(1/\delta)}{t}$$

provided that $t \gtrsim d \log(C_A) + dp \log(dp) + \log(1/\delta)$.

Renormalizing with ε , we get finally $\mathbb{P}[\|A_t - A\| < \varepsilon] \ge 1 - \delta$ whenever

$$t \le \frac{c}{\varepsilon^2} \left(\log(\frac{1}{\delta}) + d\log(C_A) + dp\log(\frac{dp}{\varepsilon}) \right).$$

Part II. Instance-specific optimal algorithms B. Uncontrolled systems / fixed confidence

Why the fixed-confidence setting?

After t samples, an optimal estimator (alone) has, w.p. $1 - \delta$, an error equal to

$$||A_t - A|| = c\sqrt{\frac{\log(\frac{1}{\delta}) + d}{t\lambda_{\min}(\Gamma_{\infty}(\mathbf{A}))}}.$$

It depends on the unknown A.

So when do you know when to stop gathering samples? **Add a stopping rule.** (This is also very useful in adaptive control)

An optimal stopping rule for the LSE

Objective. Stop as soon as (ε, δ) -PAC guarantees are achieved.

Algorithm.

1. Stopping rule (based on the GLRT, **Chernof**'59): stop at τ where

$$\tau = \inf \left\{ t \ge 1 : \lambda_{\min} \left(\sum_{s=0}^{t-1} x_s x_s^{\top} \right) > \beta(\varepsilon, \delta, t) \lor \mu \right\}$$
$$\beta(\varepsilon, \delta, t) = \frac{(2\sigma)^2}{(1 - \alpha)\varepsilon^2} \log \left(\frac{5^d \det(\sum_{s=0}^{t-1} x_s x_s^{\top} + \frac{\alpha\mu}{1 - \alpha} I_d)^{\frac{1}{2}}}{\delta \det(\frac{\alpha\mu}{1 - \alpha} I_d)^{\frac{1}{2}}} \right)$$

for some tuned $\mu > 0$ and $\alpha \in (0,1)$.

2. Estimator: the LSE A_{τ} .

Optimality of (Chernoff's stopping rule + LSE)

Define the increasing function ϕ_A as $\phi_A(t) = \lambda_{\min} \left(\sum_{s=1}^{t-1} \Gamma_{s-1}(A) \right)$.

Theorem 8 For all $\varepsilon > 0$ and all $\delta \in (0,1)$, the LSE combined with the stopping rule τ is (ε, δ) -PAC and the expected sample complexity satisfies:

$$\phi_A(\mathbb{E}[\tau]) \lesssim K^4 \max\left\{\frac{1}{\varepsilon^2}, \mathcal{J}_A^2\right\} \left(C_{A,d,\varepsilon,K}d + \log\left(\frac{1}{\delta}\right)\right),$$

where $C_{A,d,\varepsilon,K} \lesssim \log\left(\frac{K^6\mathcal{J}_A^2\|\Gamma_\infty(A)\|^2d}{\varepsilon^2}\right)$. where \lesssim hides constant that can only depend on μ and α .

Part II. Instance-specific optimal algorithms C. Controlled systems / fixed budget

Based on Wagenmaker-Jamieson

"Active Learning for Identification of Linear Dynamical Systems", COLT 2020.

Sample complexity lower bound

$$G_t^u(A,B) = \sum_{s=0}^{t-1} x_s^u(x_s^u)^{\top}$$
 where $x_t^u = A^{t-1}Bu_0 + \ldots + ABu_{t-2} + Bu_{t-1}$.

The sample complexity τ_A of any algorithm (ε, δ) -locally stable in A satisfies:

$$\sup_{u \in \mathcal{U}} \lambda_{\min} \left(G_{\tau_{A}-1}^{u}(A,B) + \sum_{s=1}^{\tau_{A}-1} \Gamma_{s-1}(A) \right) \ge \frac{1}{4\epsilon^{2}} \log(\frac{1}{2.4\delta}).$$

For k-periodic inputs with average power γ , $u \in \mathcal{U}_{\gamma}(k)$, define

 $\Gamma^u_k(A,B) := \lim_{t \to \infty} \frac{1}{\gamma^2 t} \sum_{s=0}^{t-1} x^u_s(x^u_s)^{ op}$. The lower bound becomes:

$$\tau_A \ge \frac{1}{8\varepsilon^2} \frac{1}{\max_{u \in \mathcal{U}_{\gamma}} \lambda_{\min}(\gamma^2 \Gamma_{\infty}^u(A, B) + \Gamma_{\infty}(A))} \log(\frac{1}{2.4\delta}),$$

where

$$\max_{u \in \mathcal{U}_{\gamma}} \lambda_{\min}(\gamma^2 \Gamma_{\infty}^u(A,B) + \Gamma_{\infty}(A)) := \lim_{k \to \infty} \max_{u \in \mathcal{U}_{\gamma}(k)} \lambda_{\min}(\gamma^2 \Gamma_k^u(A,B) + \Gamma_k(A))$$

A certainty equivalence-based algorithm

Main idea. The optimal inputs depends on A. Replace A by its current LSE \hat{A} and solve $\max_{u \in \mathcal{U}_{\gamma}} \lambda_{\min}(\gamma^2 \Gamma^u_{\infty}(\hat{A}, B) + \Gamma_{\infty}(\hat{A}))$ to drive the excitation.

Algorithm.

Initialization. Set $T_0 = 100$, $k_0 = 1$

Observe T_0 without excitation

 $\hat{A}_0 \leftarrow \mathsf{LSE}$ based on data up to T_0

$$u^1 \leftarrow \arg\max_{u \in \mathcal{U}_{\gamma/\sqrt{2}}(2k_0)} \lambda_{\min}(\gamma^2 \Gamma^u_{2k_0}(\hat{A}_0, B) + \Gamma_{2k_0}(\hat{A}_0))$$

For i = 1, 2, ..., do

- 1. $T_i \leftarrow 3T_{i-1}, T \leftarrow T + T_i, k_{i+1} = 2k_i$
- 2. Observe T_i samples with $u_t = u_t^i + \eta_t^u$ with $\eta_t^u \sim \mathcal{N}(0, \frac{\gamma^2}{m}I)$
- 3. $\hat{A}_i \leftarrow \mathsf{LSE}$ based on data up to T
- 4. $u^{i+1} \leftarrow \arg\max_{u \in \mathcal{U}_{\gamma/\sqrt{2}}(k_{i+1})} \lambda_{\min}(\gamma^2 \Gamma^u_{k_{i+1}}(\hat{A}_i, B) + \Gamma_{k_{i+1}}(\hat{A}_i))$

Asymptotic optimality of the algorithm

Theorem 9 For $\varepsilon > 0$ small enough, the sample complexity of the previous algorithm satisfies: for some universal constant C > 0,

$$\lim_{\delta \to 0} \frac{\tau_A}{\log(\frac{1}{\delta})} \le \frac{C}{\varepsilon^2} \frac{1}{\max_{u \in \mathcal{U}_{\gamma}} \lambda_{\min}(\gamma^2 \Gamma_{\infty}^u(A, B) + \Gamma_{\infty}(A))}$$

Remark. What do we win over pure but colored noise? $\operatorname{sp}(A) = \lambda \in \mathbb{R}^d_+$, colored noise input $u_t \sim \mathcal{N}(0, \Sigma^\star)$ where Σ^\star is optimized.

Sample complexity with colored noise:
$$\Theta(\gamma^2/\|\mathbf{1} - \lambda\|_1)$$

Minimal sample complexity: $\Theta(\gamma^2/\|\mathbf{1} - \lambda\|_2^2)$

Example: $\lambda_i = 1 - 1/d$, a factor d won with the optimal excitation vs colored noise.

Conclusions

• Minimal sample complexity to get (ε, δ) -PAC guarantees for linear sysID:

without excitation
$$\Theta\left(\frac{d + \log(1/\delta)}{\varepsilon^2 \lambda_{\min}(\Gamma_{\infty}(A))}\right)$$
 with excitation
$$\Theta\left(\frac{d + \log(1/\delta)}{\varepsilon^2 \max_{u \in \mathcal{U}_{\gamma}} \lambda_{\min}(\gamma^2 \Gamma_{\infty}^u(A, B) + \Gamma_{\infty}(A))}\right)$$

- "Optimal" algorithms: LSE + certainty equivalence for active excitation
- Next challenges:
 - Towards truly optimal and computationally efficient active learning algorithms
 - Non fully observable states
 - Non-linear system identification
 - A systematic understanding of lower bounds in the moderate confidence regime

Q&A

For more questions and feedback, please contact us:

jedra@mit.edu, jedra@kth.se alepro@kth.se