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Linear System Identification

Linear time invariant systems. xt+1 = Axt +But + ηt+1

Unknown A ∈ Rd×d, known B ∈ Rd×m

(ηt)t≥1 i.i.d. ∼ N (0, Id) or i.i.d. isotropic1 vectors with independent coordinates of ψ2-norm2

less than K.

From the observation of a finite system trajectory, learn A with minimal error.

The trajectory can be uncontrolled or controlled.

1Isotropic means E[ηtη>t ] = Id.
2‖ηt‖ψ2

= inf{K ≥ 0 : E[exp(η2t /K2)] ≤ 2}
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Fixed budget vs. fixed confidence settings

Fixed budget. Fixed trajectory length.

- Algorithm: an adaptive control policy3 + an estimator Ât;

- Sample complexity τA := inf{t′ : ∀t ≥ t′,PA(‖Ât −A‖ > ε) < δ};
- Objective: devise an algorithm with minimal sample complexity.

Fixed confidence. Target accuracy and confidence levels (ε, δ).

- Algorithm: an adaptive control policy3 + a stopping rule + an estimator Â;

- Sample complexity EA[τA] where τA is the time when the algorithm stops;

- Objective: devise an (ε, δ)-PAC algorithm with minimal sample complexity EA[τA];

(ε, δ)-PAC: PA(‖Â−A‖ > ε) < δ.

3Only in controlled / active learning scenario.
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Minimax vs instance-specific guarantees

Minimax sample complexity. G(A, ε, δ) = infalgo supA∈A τA where A is a wide set of

possible systems.

Minimax optimality: an algorithm with τA ≤ G(A, ε, δ) for all A ∈ A.

Instance-specific sample complexity. g(A, ε, δ) = infalgo∈Π τA where Π is a wide set of

(reasonably adaptive) algorithms.

Instance-specific optimality: an algorithm in Π with τA ≤ g(A, ε, δ) for all A.
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Learning: be specific!

Minimax lower bounds come from wacky and meaningless examples.

Minimax optimality just states that the algorithm performs ok in the worst possible system, it

does not say whether the algorithm learns and adapts to the system.
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Research agenda

Part I. Derive instance-specific sample complexity lower bounds for system identification

How do they depend on A?

How do they scale in ε, δ, d,m?

Part II. Devise instance-specific optimal algorithm

Is the LSE optimal?

What stopping rule works in the fixed confidence setting?

How to perform optimal exploration/excitation?
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Related work – Uncontrolled systems

Control community. Mostly asymptotic results, e.g. Ljung’76, LSE and Prediction error

methods. For finite time analysis, see Weyer et al.’96, Tikku-Poola’93, Daleh’93, etc.

Learning approach. (Given accuracy and confidence levels ε, δ)

• Faradonbeh-Tewari-Michailidis’18: τA ≈ 1
ε2 log(1/δ)3C(A)d log(d)

• Simchowitz-Mania-Tu-Jordan-Recht’18:

τA ≈
1

λmin(Γk(A))ε2
(d log(d/δ) + log det(Γt(A)Γk(A)−1))

if (τA, k) satisfies:

τA ≥ ck(d log(d/δ) + log det(Γt(A)Γk(A)−1))

• Sarkar-Rakhlin’19: τA ≈ C(A, d) 1
ε2 log( 1

δ )

We aim for an optimal and explicit dependence in δ, ε, and A.
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Related work – Controlled systems

Control community. Mehra’76, Goodwin-Payne’77, Jansson-Hjalmarsson’05, Rojas et

al.’07, etc.

Learning approach. (Given accuracy and confidence levels ε, δ)

• Wagenmaker-Jamieson’20: more later on this paper ...
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Objectives of this talk

Simplifying (as much as possible) and explaining learning tools towards a finite-time analy-

sis of linear sysID

1. Lower bounds (information theory)

2. Performance analysis of algorithms (concentration of random vectors and matrices)
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Part I. Instance-specific sample complexity lower bounds
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A generic inference problem

Familly of stochastic generative parametrized models A
Observations O sampled under some unknown model A ∈ A
Inference algorithm π : O 7→ Â, performance metric pπA

What is the fundamental inference limit supπ p
π
A?

Example 1: A = Rd×d, O = (x0, . . . , xt) where xt+1 = Axt + ηt+1,

pπA = τ−1
A (sample complexity to get PA(‖Â−A‖ > ε) < δ).

Example 2: A = Rd×d, O = (x0, u0, . . . , ut−1, xt) where xt+a = Axt +But + ηt+1.

The adaptive control (ut)t≥0, adapted to the natural filtration, can be part of π.
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The change-of-measure argument
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From change-of-measure to optimal algorithms: success stories

Lai–Robbins’85: Regret minimization in stochastic Multi-Armed Bandits

Recent success stories:

- Regret in infinite bandits (NIPS 2013)

- Regret in unimodal bandits (ICML 2014)

- Regret in Lipschitz bandits (COLT 2014)

- Regret in combinatorial bandits (NIPS 2015, NeurIPS 2023)

- Clustering in SBM (COLT 2014, NIPS 2014, NIPS 2015, NIPS 2016, NeurIPS 2019)

- Regret in bandits with generic structure (NIPS 2017)

- Regret in MDP with generic structure (NeurIPS 2018)

- Best arm identification in linear bandits (NeurIPS 2020)

- Regret in muti-agent bandits (AISTATs 2020)

- Best arm identification in structured bandits (NeurIPS 2021)

- Best policy identification in MDPs (ICML 2021, NeurIPS 2021)

- System identification in linear systems (IEEE TAC 2023)

- Networked bandits (ICML 2023, NeurIPS 2023)
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Uncontrolled systems: xt+1 = Axt + ηt+1; fixed budget

Class Π of reasonable algorithms. An algorithm is (ε, δ)-locally stable in A if there exists τ

such that ∀t ≥ τ and ∀A′ ∈ B(A, 6
√

2ε), PA′ [‖Ât −A′‖ ≤ ε] ≥ 1− δ.

Finite-time gramian. For any t ≥ 0, Γt(A) =
∑t
k=0A

k(Ak)>

Theorem 1 For any A, for all ε > 0, δ ∈ (0, 1), the sample complexity τA of any algo-

rithm (ε, δ)-locally stable in A satisfies:

λmin

( τA−1∑
s=1

Γs−1(A)
)
≥ 1

2ε2
log(

1

2.4δ
).
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Uncontrolled systems: xt+1 = Axt + ηt+1; fixed budget

Class Π of reasonable algorithms. An algorithm is (ε, δ)-locally stable in A if there exists τ

such that ∀t ≥ τ and ∀A′ ∈ B(A, 6
√

2ε), PA′ [‖Ât −A′‖ ≤ ε] ≥ 1− δ.

Finite-time gramian. For any t ≥ 0, Γt(A) =
∑t
k=0A

k(Ak)>

Theorem 2 For any stable A, for all ε ∈ (0, ‖Γ∞(A)‖−3/12), δ ∈ (0, 1/2), under any

algorithm (ε, δ)-locally stable in A, we have: for c > 0 (universal constant)

λmin

( τA−1∑
s=1

Γs−1(A)
)
≥ c

ε2

(
log(

1

δ
) + d

)
.

16



Uncontrolled systems: xt+1 = Axt + ηt+1; fixed budget

A looser but explicit lower bound (exact for scalar systems).

φa(t) =

t−1∑
s=1

s−1∑
k=0

a2k =


t− 1 if a = 0,
a2t+t(1−a2)−1

(1−a2)2 if a 6= 1,
t(t−1)

2 if a = 1.

For any estimator (ε, δ)-locally stable in A: φ|λd(A)|(τA) ≥ c
ε2 (log( 1

δ ) + d),

where λd(A) is the complex eigenvalue of A with smallest amplitude.
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Proof of Theorem 1 (1/2)

1. Let π be (ε, δ)-locally stable in A, and let τA denote its sample complexity.

2. Select a confusing model A′. Let O denote the observation up to time τA, then

EA
[
ln

PA[O]

PA′ [O]

]
=

1

2
tr
(

(A−A′)>(A−A′)
τA−1∑
s=1

EA
[
xsx
>
s

]︸ ︷︷ ︸
=Γs−1(A)

)
.

(here τA is the performance metric – sample complexity)

3. Data processing inequality. For any event E O-measurable,

1

2
tr
(

(A−A′)>(A−A′)
τA−1∑
s=1

Γs−1(A)
)
≥ kl(PA[E],PA′ [E]).
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Proof of Theorem 1 (2/2)

4. Select the event E. For any ∀A′: 2ε < ‖A′ −A‖ < 6
√

2ε, define E = {‖Â−A‖ ≤ ε}.
Since π is (ε, δ)-locally stable in A, PA[E] ≥ 1− δ and PA′ [E] ≤ δ. Thus,

tr
(

(A−A′)>(A−A′)
τA−1∑
s=1

Γs−1(A)
)
≥ 2kl(1− δ, δ).

5. Optimizing over A′ such that 2ε < ‖A′ −A‖ < 6
√

2ε. M = (A−A′)>(A−A′).

min
M�0

tr
( τA∑
s=1

Γs−1(A)M
)

s.t. σmax(M) ≥ 4ε2

(1)

The value of the optimization problem is: 4ε2λmin

(∑τA−1
s=1 Γs−1(A)

)
. �
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Proof of Theorem 2 (1/2)

We need more confusing models! Let us look at the optimization problem (1) but with

constraints ‖M‖ ≥ 18ε2. Its solution set is of the form:

C? = {A+ 3
√

2εvu> : v ∈ Sd−1},

where u is the eivenvector corresponding to the smallest eigenvalue of
∑τA−1
s=1 Γs−1(A).

Based on results on the unit sphere (Wyner’67),

there is a packing P ⊂ C? such that:

(i) for all A′ ∈ P, ‖A′ −A‖ = 3ε;

(ii) for all A1, A2 ∈ P, 3ε ≤ ‖A1 −A2‖ < 6
√

2ε;

(iii) |P| ≥
(

2√
3

)d
.

∀A′ ∈ P, tr
(

(A−A′)>(A−A′)
τA−1∑
s=1

Γs−1(A)
)

= 18ε2λmin

(
τA−1∑
s=1

Γs−1(A)

)
.
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Proof of Theorem 2 (2/2)

3. Data processing inequality. P = {A1, . . . , A|P|}. For all disjoint events Ei O-measurable:

1

|P|

|P|∑
i=1

tr

(
(Ai −A)>(Ai −A)

τA−2∑
s=0

Γs(Ai)

)
≥ kl

 1

|P|

|P|∑
i=1

PAi(Ei),
PA
(⋃|P|

i=1Ei

)
|P|

 .

4. Let the events be Ei = {‖Ai − Â‖ ≤ ε}. Since π is (ε, δ)-locally stable in A,

1

|P|

|P|∑
i=1

tr

(
(Ai −A)>(Ai −A)

τA−2∑
s=0

Γs(Ai)

)
≥ 2 log(

|P|
δ

) ∼ d+ log(1/δ).

5. From Γs(Ai) to Γs(A). Perturbation of the gramians:

Proposition. Let A be stable. For all matrix ∆ such that 4‖∆‖ ≤ ‖Γ∞(A)‖−3/2, for all s ≥ 0,

‖Γs(A+ ∆)− Γs(A)‖ ≤ 16‖∆‖‖Γ∞(A)‖3.

�
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Uncontrolled systems: xt+1 = Axt + ηt+1; fixed confidence

An algorithm (a stopping time τ and an estimator) is (ε, δ)-PAC if for all A, it stops almost

surely in finite time, and PA[‖Âτ −A‖ ≤ ε] ≥ 1− δ.

Theorem 3 The sample complexity of an (ε, δ)-PACs satisfies:

lim
ε,δ→0

2ε2λmin

(∑EA[τ ]−1
s=1 Γs−1(A)

)
log(1/3δ)

≥ 1.

Why only asymptotic? Change-of-measure yields λmin(EA[
∑τ−1
s=0 xsx

>
s ) ≥ 1

2ε2 log(1/3δ).

Wald’s lemma does not work for Markov processes, but asymptotically as EA[τ ] grows large

(Moustakides’99).
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Controlled systems: xt+1 = Axt +But + ηt+1; fixed budget

Class Π of reasonable algorithms. An algorithm is (ε, δ)-locally stable in A if there exists τ

such that ∀t ≥ τ and ∀A′ ∈ B(A, 6
√

2ε), PA′ [‖Ât −A′‖ ≤ ε] ≥ 1− δ.

Finite-time control gramians. for any t ≥ 0, Gut (A,B) =
∑t−1
s=0 x

u
s (xus )>

where xut = At−1Bu0 + . . .+ABut−2 +But−1.

Theorem 4a For any A, for all ε > 0, δ ∈ (0, 1), the sample complexity τA of any algo-

rithm (ε, δ)-locally stable in A satisfies:

sup
u∈U

λmin

(
GuτA−1(A,B) +

τA−1∑
s=1

Γs−1(A)
)
≥ 1

4ε2
log(

1

2.4δ
).

aAdapted from Wagenmaker–Jamieson’20.
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Controlled systems: two remarks

1. The lower bound specifies the optimal excitation! The deterministic control achieving

the sup is optimal. But it depends on (A,B).

2. Dimension-dependent lower bound. Should the power of the control input be bounded,

perturbation bounds of Gut (A,B) may be established. Leading to:

Let Uγ denote the set of control signals with power bounded by γ. For any stable A, for

all ε > 0, δ ∈ (0, 1), under any algorithm (ε, δ)-locally stable in A, we have: for some

c > 0 (universal constant)

sup
u∈Uγ

λmin

(
GuτA−1(A,B) +

τA−1∑
s=1

Γs−1(A)
)
≥ c

ε2

(
log(

1

δ
) + d

)
.

24



Part II. Instance-specific optimal algorithms
A. Uncontrolled systems / fixed budget
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Least Squares Estimator

LSE: At = arg min
A∈Rd×d

∑t
s=0 ‖xs+1 −Axs‖2 =

(∑t
s=0 xs+1x

>
s

)(∑t
s=0 xsx

>
s

)†
Estimation error: At −A =

(∑t
s=0 ηs+1x

>
s

)(∑t
s=0 xsx

>
s

)†
Truncated block Toeplitz matrix:

Γ =


Id
A Id O

. . .

At−2 . . . A Id
At−1 . . . . . . A Id


When ρ(A) < 1, ‖Γ‖ ≤ J (A) =

∑
s≥0 ‖As‖.
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Optimality of the LSE

Theorem 5 Let A be stable. For any 0 < δ < 1, and any ε > 0, we have:

P (‖At −A‖ > ε) < δ, as long as the following condition holds

λmin

(
t−1∑
s=0

Γs(A)

)
≥ cmax

{
1

ε2
, ‖Γ‖2

}(
log(

1

δ
) + d

)
,

for some universal constant c.

For ε small enough, the LSE is optimal.

This proves a conjecture in Simchowitz-Mania-Tu-Jordan-Recht’18.

Corollary. For any δ ∈ (0, 1) and ε small enough, the sample complexity of the LSE satisfies:

τA ≤
1

λmin (Γ∞(A)) ε2

(
log(

1

δ
) + d

)
.

27



Performance of the LSE for marginally stable systems

Jordan decomposition of A: SJS−1, CA = ‖S‖‖S−1‖, p size of the largest block of J .

Theorem 6 Let A be marginally stable (ρ(A) ≤ 1). For any 0 < δ < 1, and any ε > 0,

the sample complexity of the LSE satisfies:

τA ≤
c

ε2

(
log(

1

δ
) + d log(CA) + dp log(

dp

ε
)

)
for some universal constant c.
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Main ingredients of the proof

‖At −A‖ ≤

∥∥∥∥∥∥
(
t−1∑
s=0

ηsx
>
s

)(
t−1∑
s=0

xsx
>
s

)− 1
2

∥∥∥∥∥∥︸ ︷︷ ︸
self-normalized process

∥∥∥∥∥∥
(
t−1∑
s=0

xsx
>
s

)− 1
2

∥∥∥∥∥∥︸ ︷︷ ︸
smallest eigen value of the covariate matrix
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Spectrum of the covariates matrix

Theorem 7 Let ε > 0. Let M =
(∑t−1

s=0 Γs(A)
)− 1

2

and X> = (x1, . . . , xt). Then:

1

‖M‖
(1−K2ε) ≤ sd(X) ≤ · · · ≤ s1(X) ≤ (1 +K2ε)

1

sd(M)

holds with probability at least

1− 2 exp

(
−c1ε2 1

‖M‖2‖Γ‖2
+ c2d

)
,

for some universal constants c1, c2 > 0.
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Concentration of the spectrum of the covariates matrix

Both s1(M) and sd(M) scale as 1/
√
t, hence all singular values of the covariates matrix X

scale as
√
t.

0 10000 20000 30000 40000 50000

0

1

2

3

4

5

6 1√
t
smax(X)

1√
t
smin(X)
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Proof of Theorem 7

1. Approximate isometries. Assume that ‖(XM)>XM − Id‖ ≤ max(ε, ε2).

Then 1
s1(M) (1− ε) ≤ sd(X) ≤ · · · ≤ s1(X) ≤ (1 + ε) 1

sd(M) .

2. Concentration on the set of isometries.

Lemma 1 ‖(XM)>XM − Id‖ > max(ε, ε2)K2 holds with probability at most

2 exp

(
−c1ε2 1

‖M‖2‖Γ‖2
+ c2d

)
for some positive absolute constants c1, c2.

3. Concluding the proof. Combine the two aforementioned results. �
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Proof of Lemma 1 (1/2)

1. ‖(XM)>XM − Id‖ as the supremum of a chaos process.

A chaos process is (ξ>Wξ)W∈W with W is deterministic in Rd×d, ξ is random with

independent coordinates. If ξ is isotropic, E[ξ>Wξ] = trW .

Here W = Γ>σMuσ
>
MuΓ. Specifically,

‖(XM)>XM − Id‖ = sup
u∈Sd−1

∣∣‖σMu
>Γξ‖22 − 1

∣∣ .
where ξ> = (η>2 , . . . , η

>
t+1), and

σMu =


Mu O

Mu
. . .

O Mu

 ,
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Proof of Lemma 1 (2/2)

2. Hanson-Wright inequality. Let B ∈ Rm×d, and ξ ∈ Rd be a random vector with

zero-mean, unit-variance, sub-gaussian independent coordinates. Then for all ε > 0,

P
[∣∣‖Bξ‖22 − ‖B‖2F ∣∣ > ε‖B‖2F

]
≤ 2 exp

(
−cmin

(
ε2

K4
,
ε

K2

)
‖B‖2F
‖B‖2

)
,

where c is an absolute positive constant and K = ‖ξ‖ψ2
.

Applying it to B = Γ>σMu, one gets
∣∣‖σ>MuΓξ‖22 − 1

∣∣ > ρ holds with probability at most

2 exp

(
−cmin

(
ρ2

K4
,
ρ

K2

)
1

‖M‖2‖Γ‖2

)
.

3. ε-net argument. The concentration of the supremum over u is obtained using classical

ε-net arguments.

�
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Proof of Theorem 6 (1/3)

1. Upper bound on λmax(
∑t−1
s=0 xsx

>
s ). We establish that:

Jt(A) =
∑t
s=0 ‖As‖ ≤ (t+ 1)pCA, and that

λmax

(
t−1∑
s=0

Γs(A)

)
≤ (t+ 1)2pC2

A.

We conclude using the concentration result on the spectrum of
∑t−1
s=0 xsx

>
s .

2. Lower bound on λmin(
∑t−1
s=0 xsx

>
s ). A generic decomposition (works for controlled

systems): if xt = yt + zt, for all λ > 0:

t∑
s=0

xsx
>
s �

t∑
s=0

zsz
>
s −

(
t∑

s=0

ysz
>
s

)>( t∑
s=0

yty
>
t + λId

)−1( t∑
s=0

ysz
>
s

)
− λId.

Use concentration of self-normalized processes4 to upper bound the middle term.

4Peña-Lai-Shao’09
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Proof of Theorem 6 (2/3)

Apply it to ys = Axs−1 and zs = ηs to get:

P

λmin

(
t∑

s=0

xsx
>
s

)
& t− d log

λmax

(∑t−1
s=0(Axs)(Axs)

>
)

λ
+ 1

− log(1/δ)− λ

 ≥ 1−δ

provided that the following condition holds T & d+ log(1/δ).

+ upper bound on λmax(
∑t−1
s=0 xsx

>
s ) yields:

When t & d log
(
C5
AT

3p
)

+ log(1/δ), P

(
λmin

(
T∑
t=0

xsx
>
s

)
& t

)
≥ 1− δ

3. Self-normalized process.

P


∥∥∥∥∥∥
(

t∑
s=0

ηsx
>
s

)†( t∑
s=0

xsx
>
s + Λ

)−1/2
∥∥∥∥∥∥

2

. log

(
det1/2(

∑t
s=0 xsx

>
s + Λ)

det1/2(Λ)δ

)
+ d

 ≥ 1− δ.

+ upper bound on λmax(
∑t
s=0 xsx

>
s ) to control det(

∑t
s=0 xsx

>
s + Λ).
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Proof of Theorem 6 (3/3)

4. Putting things together. We obtain:

‖At −A‖2 .
d log(C5

A(t+ 1)3p + t) + d+ log(1/δ)

t

provided that t & d log(CA) + dp log(dp) + log(1/δ).

Renormalizing with ε, we get finally P[‖At −A‖ < ε] ≥ 1− δ whenever

t ≤ c

ε2

(
log(

1

δ
) + d log(CA) + dp log(

dp

ε
)

)
.

�
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Part II. Instance-specific optimal algorithms
B. Uncontrolled systems / fixed confidence
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Why the fixed-confidence setting?

After t samples, an optimal estimator (alone) has, w.p. 1− δ, an error equal to

‖At −A‖ = c

√
log( 1

δ ) + d

tλmin(Γ∞(A))
.

It depends on the unknown A.

So when do you know when to stop gathering samples? Add a stopping rule.

(This is also very useful in adaptive control)

39



An optimal stopping rule for the LSE

Objective. Stop as soon as (ε, δ)-PAC guarantees are achieved.

Algorithm.

1. Stopping rule (based on the GLRT, Chernof’59): stop at τ where

τ = inf

{
t ≥ 1 : λmin

(
t−1∑
s=0

xsx
>
s

)
> β(ε, δ, t) ∨ µ

}

β(ε, δ, t) =
(2σ)2

(1− α)ε2
log

(
5d det(

∑t−1
s=0 xsx

>
s + αµ

1−αId)
1
2

δ det( αµ
1−αId)

1
2

)

for some tuned µ > 0 and α ∈ (0, 1).

2. Estimator: the LSE Aτ .
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Optimality of (Chernoff’s stopping rule + LSE)

Define the increasing function φA as φA(t) = λmin

(∑t−1
s=1 Γs−1(A)

)
.

Theorem 8 For all ε > 0 and all δ ∈ (0, 1), the LSE combined with the stopping rule τ is

(ε, δ)-PAC and the expected sample complexity satisfies:

φA(E[τ ]) . K4 max

{
1

ε2
,J 2

A

}(
CA,d,ε,Kd+ log

(
1

δ

))
,

where CA,d,ε,K . log
(
K6J 2

A‖Γ∞(A)‖2d
ε2

)
. where . hides constant that can only depend

on µ and α.
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Part II. Instance-specific optimal algorithms
C. Controlled systems / fixed budget

Based on Wagenmaker-Jamieson

”Active Learning for Identification of Linear Dynamical Systems”, COLT 2020.
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Sample complexity lower bound

Gut (A,B) =
∑t−1
s=0 x

u
s (xus )> where xut = At−1Bu0 + . . .+ABut−2 +But−1.

The sample complexity τA of any algorithm (ε, δ)-locally stable in A satisfies:

sup
u∈U

λmin

(
GuτA−1(A,B) +

τA−1∑
s=1

Γs−1(A)
)
≥ 1

4ε2
log(

1

2.4δ
).

For k-periodic inputs with average power γ, u ∈ Uγ(k), define

Γuk(A,B) := limt→∞ 1
γ2t

∑t−1
s=0 x

u
s (xus )>. The lower bound becomes:

τA ≥
1

8ε2

1

maxu∈Uγ λmin(γ2Γu∞(A,B) + Γ∞(A))
log(

1

2.4δ
),

where

max
u∈Uγ

λmin(γ2Γu∞(A,B) + Γ∞(A)) := lim
k→∞

max
u∈Uγ(k)

λmin(γ2Γuk(A,B) + Γk(A))
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A certainty equivalence-based algorithm

Main idea. The optimal inputs depends on A. Replace A by its current LSE Â and solve

maxu∈Uγ λmin(γ2Γu∞(Â, B) + Γ∞(Â)) to drive the excitation.

Algorithm.

Initialization. Set T0 = 100, k0 = 1

Observe T0 without excitation

Â0 ← LSE based on data up to T0

u1 ← arg maxu∈Uγ/√2(2k0) λmin(γ2Γu2k0(Â0, B) + Γ2k0(Â0))

For i = 1, 2, . . ., do

1. Ti ← 3Ti−1, T ← T + Ti, ki+1 = 2ki
2. Observe Ti samples with ut = uit + ηut with ηut ∼ N (0, γ

2

m I)

3. Âi ← LSE based on data up to T

4. ui+1 ← arg maxu∈Uγ/√2(ki+1) λmin(γ2Γuki+1
(Âi, B) + Γki+1(Âi))
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Asymptotic optimality of the algorithm

Theorem 9 For ε > 0 small enough, the sample complexity of the previous algorithm

satisfies: for some universal constant C > 0,

lim
δ→0

τA

log( 1
δ )
≤ C

ε2

1

maxu∈Uγ λmin(γ2Γu∞(A,B) + Γ∞(A))

Remark. What do we win over pure but colored noise? sp(A) = λ ∈ Rd+, colored noise input

ut ∼ N (0,Σ?) where Σ? is optimized.

Sample complexity with colored noise: Θ(γ2/‖1− λ‖1)

Minimal sample complexity: Θ(γ2/‖1− λ‖22)

Example: λi = 1− 1/d, a factor d won with the optimal excitation vs colored noise.
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Conclusions

• Minimal sample complexity to get (ε, δ)-PAC guarantees for linear sysID:

without excitation Θ

(
d+ log(1/δ)

ε2λmin(Γ∞(A))

)
with excitation Θ

(
d+ log(1/δ)

ε2 maxu∈Uγ λmin(γ2Γu∞(A,B) + Γ∞(A))

)

• ”Optimal” algorithms: LSE + certainty equivalence for active excitation

• Next challenges:

- Towards truly optimal and computationally efficient active learning algorithms

- Non fully observable states

- Non-linear system identification

- A systematic understanding of lower bounds in the moderate confidence regime
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Q&A

For more questions and feedback, please contact us:

jedra@mit.edu, jedra@kth.se

alepro@kth.se
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