

## Deep networks for system identification: a survey

Gianluigi Pillonetto<sup>♣</sup>, Aleksandr Aravkin<sup>♦</sup>, **Daniel Gedon**<sup> $\heartsuit$ </sup>, Lennart Ljung<sup>♠</sup>, Antônio H. Ribeiro<sup> $\heartsuit$ </sup>, Thomas B. Schön<sup> $\heartsuit$ </sup>

♣University of Padova, Italy
 ♦University of Washington, USA
 ♥Uppsala University, Sweden
 ♠Linköping University, Sweden

ERNSI Workshop 2023 Stockholm, September 26, 2023



Introduction



System identification with long history









Introduction



#### Deep neural networks with recent success













 $\rightarrow$  Innovate system identification with power of deep neural networks



## 1. Modeling of dynamical systems

- 2. Deep neural network architectures
- 3. Optimization
- 4. Deep kernel-based learning
- 5. Theoretical development
- 6. Applications
- 7. Conclusion



#### Three main players:

1. Family of parameterized models

$$egin{aligned} Z &= \{x(t), y(t)\}_{t=1}^{\# train} \ g_{ heta} : Z(t) &\mapsto \hat{y}(t+1), \qquad heta \in D_{ heta} \end{aligned}$$

2. Parameter estimation method

$$\hat{\theta} = \arg\min_{\theta \in D_{\theta}} \mathcal{L}_{N}(\theta, Z_{e})$$

- 3. Validation process
  - residual analysis
  - cross-validation

$$\begin{split} \# \textit{features} &= \dim \theta \\ \mathcal{L}_{emp} &= \mathcal{L}(\hat{\theta}, Z_e) \\ \text{overfitting } \mathcal{L}_{emp} &= 0 \text{ typically for } \#\textit{features} = \#\textit{train}. \end{split}$$



#### Modeling procedure:

System identification vs deep learning





### 1. Modeling of dynamical systems

2. Deep neural network architectures

#### 3. Optimization

- 4. Deep kernel-based learning
- 5. Theoretical development
- 6. Applications
- 7. Conclusion

## **DNN** architectures



- Fully-connected networks
- Skip and direct connections
- Convolutional networks
- Recurrent neural networks
- Latent variable models
  - Autoencoder
  - Variational autoencoder
  - Deep state-space models
- Energy-based models



## **DNN** architectures



#### **Convolutional networks**

Basic building block: convolutional layer



Not just one filter but many:  $W = \{w^1, \ldots, w^b\}$ .

Then, *i*th output:  $x^i(t) = w^i(t) * z(t)$  for i = 1, ..., b



#### Formulating regression problems

Find predictive distribution p(y(t)|x(t)).

Example: NARX model

$$y(t) = f_{\theta}(x(t)) + e(t)$$
, with  $e(t) \sim \mathcal{N}(0, \sigma^2)$ 

 $\rightarrow$  Implicit assumption: p(y(t)|x(t)) is Gaussian  $\rightarrow$  neural network models the mean.

#### **Energy-based models**

$$p_{\theta}\left(y(t) \mid x(t)\right) = \frac{e^{g_{\theta}\left(y(t), x(t)\right)}}{Z_{\theta}\left(x(t)\right)} \quad \text{with} \quad Z_{\theta}\left(x(t)\right) = \int e^{g_{\theta}\left(z, x(t)\right)} dz$$

- Neural network mapping  $g_{ heta}:(y(t),x(t))\mapsto \mathbb{R}$
- Generalize implicit Gaussian assumption
- $\rightarrow\,$  asymmetric, heavy-tailed, multimodal,  $\ldots\,$  distributions possible

## Optimization



System identification:

$$\min_{\theta} \sum_{t=1}^{\#train} \mathcal{L}(y(t), f_{\theta}(z(t)))$$

Deep learning:

$$\min_{\theta_1,\ldots,\theta_L} \sum_{t=1}^{\#train} \mathcal{L}\Big(y(t), f_{\theta_L}^L \circ f_{\theta_{L-1}}^{L-1} \circ \cdots \circ f_{\theta_1}^1\big(z(t)\big)\Big)$$

Optimization: Newton's method  $O(\# train \# param^2 + \# param^3)$   $\ddagger$ 

 $\rightarrow$  first-order methods

- Large dim( $\theta$ ), nested structure  $\rightarrow$  gradient w.r.t. each layer + chain rule  $\rightarrow$  Backpropagation
- Large datasets  $\rightarrow$  stochastic methods



#### Gradient decent optimization:

 $\theta^{i+1} = \theta^i - \alpha \nabla V(\theta^i)$  with  $\alpha$  as learning rate

Stochastic gradient descent with fixed lpha does not converge  ${}_{4}^{\prime}$ 

Solution: Learning rate scheduler  $\rightarrow$  reduce  $\alpha$  to zero





- 1. Modeling of dynamical systems
- 2. Deep neural network architectures
- 3. Optimization
- 4. Deep kernel-based learning
- 5. Theoretical development
- 6. Applications
- 7. Conclusion



## Kernels for modeling dynamical systems

• Linear kernel

 $K(x_i, x_j) = x_i^{\top} P x_j$  with positive semidefinite P

induces linear functions  $f(x) = \theta^{\top} x$   $\rightarrow$  FIR models

- Linear kernel with  $P_{ij} = \varphi^{\max(i,j)}$  with  $0 \le \varphi < 1 \longrightarrow \text{stable spline/TC kernel}$
- Gaussian kernel  $K(x_i, x_j) = \exp\left(-\frac{\|x_i x_j\|^2}{\rho}\right)$  with  $\rho > 0 \longrightarrow$  NFIR models

Choice of kernel  $\rightarrow$  encode high level assumptions

## Deep kernel-based learning

**Example:**  $f = sin(e^{x/2}) \rightarrow$  complicated frequency content

- $\bullet\,$  Gaussian kernel: high RKHS norm  $\rightarrow\,$  biased estimator
- Idea: transform data  $f = \tilde{f} \circ G$

$$x(t) \longrightarrow G = e^{x/2} \Rightarrow \qquad \tilde{f} \longrightarrow y(t)$$

Choose  $G = e^{x/2} \rightarrow \tilde{f} = sin(x)$  with single frequency





Consider idea:  $f = \tilde{f} \circ G$ 

$$x(t) \longrightarrow$$
 Neural Network  $\tilde{f} \longrightarrow y(t)$ 

 $\rightarrow$  manifold Gaussian process with

$$K(x_i, x_j) := \tilde{K}(\tilde{x}_i, \tilde{x}_j) = \tilde{K}(G(x_i), G(x_j))$$

Previously: Gaussian kernel K with one scale parameter  $\rho > 0$ Now: Manifold Gaussian kernel K with many parameters  $\eta = [\rho, \theta]$ 

 $\rightarrow$  Optimize by marginal likelihood of joint density  $p(Y, f|\eta)$ 

## **Theoretical development**

۰ . . .



#### Why are deep models so successful?

- 2-layer ConvNet on MNIST:
- AlexNet on ImageNet:

1.2m parameters vs 60k data points

62.3m parameters vs 1.2m data points





Theoretical development:

- 1. interplay of overparameterization and generalization
- 2. simplification of non-convex optimization problem

## **Theoretical development**

#### System identification example:

- NARX model:  $\hat{y}(t) = \sum_{i=1}^{\# features} \theta_i \phi_i(x(t))$
- Data from: y(t) = f(x(t)) + v(t)
- #train = 100 samples
- 1-step ahead prediction



## **Theoretical development**

• Nonlinear transformation  $\phi(x)$ , input to feature space

 $\phi: \mathbb{R}^{\# \textit{inputs}} \mapsto \mathbb{R}^{\# \textit{features}}$ 

• Linear model:

$$\hat{y} = \hat{\theta}^{\top} \phi(x)$$

• Estimation procedure:

$$\min_{\theta} \sum_{i=1}^{\#train} (y_i - \hat{\theta}^{\top} \phi(x_i))^2$$

• Optimization procedure: Gradient descent starting from zero

$$\theta^{i+1} = \theta^i - \frac{\alpha}{\alpha} \nabla V(\theta^i)$$





Solutions of a linear system

$$X\theta = y$$

Three scenarios:

- 1. no solution if # features < # train
- 2. one unique solution if # features = # train
- 3. multiple solution if # features > # train

Gradient descent:

$$\min_{\theta} \|\theta\|_2 \quad \text{subject to} \quad X\theta = y$$

converges to the minimum-norm solution

 $\rightarrow$  Implicit regularization of gradient descent



#### Implicit Regularization

Gradient descent step:  $\theta^{i+1} = \theta^i - \alpha \nabla V(\theta^i)$ 

 $\rightarrow$  does not follow continuous gradient flow

Gradient descent follows more closely

$$\dot{\theta} = -\nabla \widetilde{V}(\theta)$$

with modified cost

$$\widetilde{V}(\theta) = V(\theta) + \lambda R(\theta)$$
  
 $\lambda = \frac{\alpha \ \#features}{4}, \quad R(\theta) = \frac{1}{\#features} \sum_{j=1}^{\#features} (\nabla_j V(\theta))^2$ 

 $\rightarrow$  gradient descent penalizes directions j with large cost  $V(\theta)$ 



## 2. Simplification of non-convex optimization problem

Setup:

- wide neural network with large  $\theta \in \mathbb{R}^{\# \textit{features}}$
- each update changes  $\theta$  just by small amour
- ightarrow linearize model around  $heta_0$

$$f_{\theta}(x) pprox f_{ heta_0}(x) + 
abla f_{ heta_0}(x)^{ op} ( heta - heta_0)$$

Neural tangent kernel

$$K(x,z;\theta_0) = \nabla f_{\theta_0}(x)^\top \nabla f_{\theta_0}(z)$$

 $\rightarrow$  convex optimization problem





- 1. Modeling of dynamical systems
- 2. Deep neural network architectures
- 3. Optimization
- 4. Deep kernel-based learning
- 5. Theoretical development

## 6. Applications

7. Conclusion

## Applications



Matlab example: forced duffing oscillator (silverbox benchmark)

# Linear Box-Jenkins type model $\rightarrow$ Fit is 29.7%

#### Cascaded feedforward network

 $\rightarrow$  Fit is 99.2%



## Applications



Pytorch example: Coupled electronic drives benchmark

- Basline: linear ARX model
- Feedforwad model
- LSTM
- Deep state-space model



Good fit of deep models despite #*train* = 300

- dim $(\theta_{FF}) = 184,200$
- dim $(\theta_{LSTM}) = 169,801$
- dim $(\theta_{DSSM}) = 111,902$



## Conclusion



#### Essential for using neural networks:

- many parameters  $\rightarrow$  overparameterization
- many layers  $\rightarrow$  deep architectures

#### **Open problems:**

- Successful architectures:
  - Attention models and transformers
  - Flow-based models
  - Generative adversarial models (GANs) and diffusion models
  - Graph neural networks
- Robustness issues
- Theoretical development
- ...



## Thank you!

#### Daniel Gedon, Uppsala University

E-mail: daniel.gedon@it.uu.se Web: dgedon.github.io

Twitter: @danigedon

