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Koopman Operator

Lecture Notes in Control and Information Scences 484

— Koopman operators appear in theory an Michae G. Mackey
Koop perators app theory and ias C 1
. Alexandre Mauroy
practlce of americsl | Chaos, Fractals, Igor Mezi¢
Sciences | and Noise Yoshihiko Susuki Editors
o fractals and chaos Shochastc Aspecs
@ fluid dynamics and PDEs it

nonlinear dynamics
nonlinear control, e.g., in robotics

neural networks and DL

Concepts, Methodologies, and

Applications
@ Springer s
Pt

— This talk: Can we learn Koopman operators efficiently?
— Main reference:

M. Khosravi, “Representer theorem for learning Koopman operators”, in IEEE Trans-
actions on Automatic Control, vol. 68, no. 5, pp. 2995-3010, May 2023.
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Koopman Operator

Euclidean space R Hilbert space H
/_)(?)
lifting
xt = f(x) K3g gt =Kg
Nonlinear dynamics Kg=gof P L_inea_r dypamic_s in
in finite dimension X3 Koopman infinite dimension
X1 5_7
X2 Kg

Given space X" and vector field: f: X — X, we have a dynamical system as
x" = f(x)

Hilbert space of observables: H C RY := {g: X — R| g measurable}
Koopman operator

K:H —H
g()—g(f())  (or Kg=gof)

Koopman operator K € L(#) defines a linear dynamical system on H
9" =Ky
e Main feature: (K"g)(:) =g(f(f(---(f(-))--)))
——

n times
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Learning Koopman Operator

@ A trajectory of system: Xo,X1,...,Xp, € X
@ A set of observables: gi1,92,...,9n, € H

o We are given

gi(x0),  g1(x1), gi(x2), ... g1(xn,)
: : trajectory Xg, ..., Xng
g1(x0), qi(x1), gi(x2), ...  @gi(xXn,) ~ through the lens of observable
g : X =R
Gng (XO)» Ing (x1), Ing (x2), ... gng (Xng)

o Dataset: 92 :
or D

{ykl ::gl(xk)|k=0,...7ns,l:17...,ng},
{(leykl :=gz(xk))‘k:O7...,ns,l=1,...,ng}

Problem (Learning Koopman Operator)

Learn Koopman operator K € L(#) using data D, i.e., find K such that Kg ~gof.

@ Drawbacks of existing methods and problem formulations:
o Not General
Not Rigorous — ad hoc and imprecise formulation
Indirect Approach — structural approximation + parameter estimation
Expert-type Knowledge — eigenfunctions are given!
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Learning Koopman Operator

Problem (Learning Koopman Operator)

Learn Koopman operator K € L(#) using data D, i.e., find K such that Kg =~ go f.

@ Generic form of Koopman operator learning problem:
min E(K) + AR(K)
KeL(H) (*)
s.t. KecC

@ Main ingredients of the problem:

e empirical loss £ : L(H) - RU {400} ~~ to evaluate fitting on the data
o regularization R : L(H) = RU {400} ~> to avoid overfitting and/or for soft

incorporation of side-information
e constraints C C L(H) ~ other constraints of interest or

hard incorporation of side-information

@ Question: Considering that (%) is an infinite-dimensional optimization problem,
when and how can ve solve it?
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Learning Koopman Operator — Tikhonov Regularization

@ Learning Koopman operator with Tikhonov regularization

Ns
. 2 2
min (Kg1) (xk— MK

(i Z:”z; i — (Kgi)(x-1))” + AK]| ()

@ The evaluation operator at x € X
ex: H—=R
g — g(x) (recall that g : X — R)
o Assumption I: The evaluation operators e, . - ., ex,, _, are bounded, i.e., there exists
V1, ..., Un, such that
(U, 9) = ex;,_,(9) = g(xk=1), fork=1,...,ns, andany g € H

o V= [<U’€1’vk2>]zs,k2: the Gram matrix of v1,..., vn,

G .= [(gll,gb)}l L the Gram matrix of g1,...,gn,

oY := [ykl]zs’lnlg 1 [gl(xk)]:s:’:lgzl
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Learning Koopman Operator — Tikhonov Regularization

— Under Assumption |, the learning problem

min ZSZ ykz (Kar) (kal))2+)\||K||2 (1)

KeL(H)
k=1 I=1

has a unique solution.
— The solution of () admits a parametric representation as

izakl Ve @ g

k=1 1=1
— The coefficient matrix A = [a],~ lnf . € R"*"e is the solution of following finite-

dimensional convex optimization problem

c 2 4 12
min  [[VAG —Y|2 + A[VZAG3|

AER"s X"g
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Learning Koopman Operator with Image in a Subspace of Interest

o Given W, a closed linear subspace of H, define Koopman learning problem as

Ny

2
i K MK
iy S5 e ) 2 g

st.  KeLw:={SeLM)|S(g)eW, forl=1,...,n.}

— Under Assumption I, the learning problem (1) has a unique solution. The solution of (1)
admits a parametric representation as

i: Z arr (Mywvk) @ gi

k=1 1=1

ng, Ng

— The coefficient matrix A = [axi],>, 7., € R™*™e is the solution of following finite-
dimensional convex optimization problem

min  [WyAG — Y| + A[Wy2AG?|?

AER™s XNg

where Wy, is the Gram matrix of ILywvi, ..., [Iwv,,.
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Connection to Extended Dynamic Mode Decomposition (EDMD)

o EDMD approximate K by a finite-dimensional map U : G — G, where

G :=span{gi,...,gn.}-

So, U has a matrix representation in basis {g1,...,gn,} as
Ng
Ugi =Y Mg, forl=1,...ng
j=1

o EDMD employs data to estimate M as

ns Mg

M" = argmin Z Z ((Ugj)(xk—1) — g5 (xx))

Nng Xn
MeER™e™TE p—1 j=1

@ Replacing W with G in our approach, the Koopman learning problem becomes

Ng 2
i (K _ MK
Kglﬁlg{) kzllzl(ykz gi) (X 1)) + AlIK]|
s.t. Ke Lg
whereKEﬁg—{SGﬂ |ngeg fori=1,. g}.
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Connection to Extended Dynamic Mode Decomposition (EDMD)

Define matrix Cyi+ as M* G, and, let operator Ky € L(H) be defined as

g g

Ko=) [Caln 9 @ g

Jj=1 = 1

Then, we have ns )
Ky € argmin Z Z yr — (Kagi) xk_l)) .
KeLg 1 =1

Also, the EDMD map U coincides with the restriction of Ky to G, ie., U =Ky .

Theorem 4

For A > 0, let K, be the unique so/ution of

Ns

min J»(K) : ZZ yrr — (Kgi)( Xk—1))2+)\||KH2,

KeLlg
k=1 I=1

Then, limy o K,\ = KU and lim ) _, KA = 0, both in operator norm topology.
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Learning Koopman Operator — Generalized Representer Theorem

@ Generic form of Koopman operator learning problem:

min  £(K) + AR(K)
KeF
s.t. KecC

o Ingredients of the problem:
o empirical loss € : L(H) — RU {+o0}
o regularization term R : L(H) - RU {400}
e constraint set C C L(H)
o regularization weight )\ >0
o feasible set F = L(H) or Lyy, where W is a closed linear subspace of H.

Recall that: Ly = {S € L(H) | S(g;) EW, forl=1,... ,ng}

representer vectors zj := vy or Ilyvg, fork=1,...,ns
define Z := span{z1,...,2n.}
define Z as Gram matrix of z1,..., zn,
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Learning Koopman Operator — Generalized Representer Theorem

@ Consider index set Z C {1,...,ns} x {1,...,ng}.
o Define vector yz := [ykl} eper = [gl(xk)] (kD)eT c RIZI,
o Let £: Rl x RFl - RU {400} be a function such that
0(,yz) : R 5 RU {400}
is a proper convex function.

o The generalized empirical loss & : L(H) — RU{+o0} can be defined in the following
general form

E(K) =L ([(Kgn) (k1)) 1y e ¥7)

:Z( [(Kgl)(x’“‘l)} (k,)ET’ [y“} (k,l)EI)

@ Various forms of empirical loss are in this form, including

iz ykl (Kagi)( chfl))2

k=1 1=1
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Learning Koopman Operator — Generalized Representer Theorem

o Example |: empirical loss for outlier robust regression

Ns

Ev(K) or EL(K ZZL Ykl — ng)(Xk—l))z,

k=1 l=1

where, given p >, loss function L : Ry — R is defined as
e2, if le] <p

Huber loss: L(e) =
o Huber loss: L(e) {2|e|p—p2, otherwise

o pseudo-Huber loss: L(e) = (e + pQ)% —p

o Example Il: empirical loss based on robust optimization

= 2
z‘: (K) or 51,{ = lglgl)/lcz Z ykl Kgl Xk_l) — A(k,l))
k=1 1=1

o Example Ill: empirical loss based on distributionally robust optimization

E(K) or Ep(K) := sup Eap Z Z e — (Kgi)(xk—1) — A(k,l))Q

pep k=1 I=1
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Learning Koopman Operator — Generalized Representer Theorem

o Define augmented regularization R : L(H) — RU {+o00} as R := R + é¢
o Assumption II: For any S € L£(H), we have R(I1z STlg) < R(S).

— Under the mentioned assumptions, if the learning problem
min  &(K) + AR(K)
KeF
st. Kec,
admits a solution, then it has a solution with following parametric representation

(*)

ng g
K= Zzau zk @ gi
k=1 =1
— When D := F Ndom(R) NC is a non-empty, closed and convex set, R is convex and
lower semi-continuous, and R is coercive, then (%) admits at least one solution with the
given parametric representation.
— Additionally, if R is strictly convex on D, then the solution of (x) is unique.

.
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Learning Koopman Operator — Generalized Representer Theorem

o Define augmented regularization R : L(H) — RU {+o0} as R := R + é¢
o Assumption II: For any S € £(H), we have R(I1z STlg) < R(S).

Theorem 6
Let At,. .., Am € Ry,
® Ri: L(H) — Ry U{+oo} be a regularization function, fori =1,...,m,
© Co CH, foreacha € A.  (A: arbitrary index set)
Define
@ C :=Naeals and
@ Rio:i=NRi+dc,, forac A.

If Assumption Il is satisfied by R; ., for eacha € A andi=1,...,m, then R : L(H) —
R4 U {400} defined as

R := Z ANiRi + Oc
also satisfies Assumption II. i=1

A
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Learning Koopman Operator — Frobenius Norm Regularization

o Given orthonormal basis {bx }3—, Frobenius norm of operator K

IK|[F = Y (br, K*Kbg) = Y [|Kby?
k=1 k=1
@ The problem of learning Koopman operator with Frobenius norm regularization

. 2 !
Inin E(K) + AK|lw (1)

— Under previous assumptions and if A > 0, the optimization problem (1) admits a unique
solution K with parametric form
nz Mg
K= Zzakl 2k @ g1
k=1 I=1
2 g, N . .
—If gg(K) = :szl Zln:gl (ykl = (Kgl)(xkfl)), then A = [akl]kzl,lgzl is the solution of
following finite-dimensional convex quadratic program
min [|ZAG - Y[} + A|Z2AG? |2 ()
A€ER"z*"g y

@ There is a closed-form solution for (1'), and thus, for (7).
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Learning Koopman Operator—Rank Constraint

@ The problem of learning Koopman operator with rank constraint
min  &(K)
KeF
st. KeC:= {S €eF | rank(S) := dim(S(H)) < r}

Theorem 8
Under previous assumptions, if the optimization problem (1) admits a solution, then it has

a solution K with parametric form
Nz
Z Z akl 2k @ gi

k=1 I=1
If £&(K) = S (ykl - Kgl)(xk,l))27 then A = [akl]:i’lfblgzl is the solution of
foIIowmg fmnte-dnmensuonal optimization problem
min |ZAG - Y||3,
Aer™Xne )
s.t. rank(ZAG) <r

o Using Eckart-Young-Mirsky Theorem, we can solve (1), and subsequently, (1).
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Learning Koopman Operator—Nuclear Norm Regularization

@ Nuclear norm of operator K

[|IK]||« = sup {\tr(CK)\ | C compact, ||C|| < 1}

@ The problem of learning Koopman operator with nuclear norm regularization

min Eo(K) + MK« (%)

Theorem 9

— Under previous assumptions and if A\ > 0, the optimization problem (%) admits a
solution K with parametric form

izakz 2k @ gu

=1l =il

—If &(K) DD (ykl Kgl)(xk,1))27 then A = [akl}:i’flil is the solution of
foIIowmg fmnte-dnmensuonal convex program

0 2 1 1
min  [|[ZAG = Y||r + \|ZZAG? |,

AcR™zX"g
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Learning Koopman Operator — Stability Side-Information

Let xeq = 0 be an equilibrium point, i.e., xeq = f(Xeq). Then, under certain conditions, Xeq
is a globally stable equilibrium point if, for some € > 0, we have

IKI<1-—e.

@ The problem of learning stable Koopman operator

Inin E(K) + AR(K)

st. Kec (x*)
K[ <1-e¢

Under previous assumptions, the existence, uniqueness and parametric representation

ngz Mg

K:ZZGM zk Q g

k=1 l=1

are guaranteed for the solution of learning problem (*x).
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Learning Koopman Operator — Stability Side-Information

@ Solving a finite-dimensional convex program with quadratic objective function and
LMI constraints when

R =12 or |- 112
i E(K) = 320 S (g — (Ka) (1))

iii. no additional constrain

@ The optimization problem

— for the case of R(-) = | - [|?
. 1 1
min HZzBG2 _YH% + >‘52
BG]:R’IZZXTLg7 BGR
s, (B o ] =0
B<1—g¢,
— for the case of R(:) = || - ||12:
min IZ2BG? — Y|2 + AlB|2
BEIR”zX"g, BER
Bln B
s.t. |: BTg B]Inz = 0,
B<1—e.
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Example |: Learning Koopman Operator — Regularization Weight Sweep

@ Nonlinear dynamical system
T1,k+1 = H1T1,k
2 2
To k1 = pP2@2k + (U1 — p2)21 %
@ Single trajectory, 60 samples, and three observables ~~ three eigenvalues
o Regularization term: || - ||, || - [|&, || - ||
o Regularization weight A sweep: 0 <— oo

Regularization: || - || Regularization: || - [|% Regularization: || - |«

e o EDMD|¢ e EDMD|¢ e EDMD|q

"N M M

Y2 , —] L —]

] ] 3
0.5 1

0
10-10 100 00 1010 100 00 1010 100 100
A A A
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mean squared error

Example Il: Learning Koopman Operator — Right Choice for Regularization

@ Van der Pol oscillator

10°

L3

B3

100

T1 = X2
. _ 2 1
T2 = p(l —x1)x2 — 21
o Two trajectories
. . . . -1
o Monte Carlo experiment: 120 noisy realizations
@ SNR levels: 10dB, 20dB, 30dB
@ MSE on a set of test functions 3 o init. pt.
-3 -1 x 1 3
[| - reg. |- Il reg. [| -l reg. rank const.
109 106 10° + : 106
4
1
10* 10! 10* E| 10! + i
E3 pe
;
‘ s
B H e
102 102 102 } wl L+
+ T ‘
= % — \
= 4 = 4L
10dB  20dB  30dB 10dB  20dB  30dB 10dB  20dB  30dB 10dB  20dB  30dB

2
TUDelft




Example Ill: Learning Koopman Operator — Stability Side-Information

Dynamical system: Nicholson-Bailey model for host-parasitoid dynamics

Side-information: stability 4
mean squared error

0.25 | |-+-0mee- traj. R IR aé'n.,.. ° 4 ;
o moisy meas.| ° e 10° El pS 1
o init. pt.
P | E
°
,’. '0"; 'o,“ % |
g0 ol
K R % 1
~ 015} i08  a®g o - %
= %o ° *g° "o . H 10! ]
£ Foghobos, Y
: [ “%’" ° » ?
° 6 % 3 i 9
d ) o FPwos ) ° 0
i 8 0000’ ; 3 107 ]
) o Qo 9
. @ o %wo# O ©° ¢
%00 0%0..9..00 0"9 s .-"‘° *
e, © % .o
0.05 |- 00...g.. 8 0. g S ° L] 1 10-1L % |
o
0.3 0.4 0.5 EDMD Frobenius stability
T reg. const.
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Example IV: Learning Koopman Operator — A PDE Case

Dynamical system: advection-diffusion PDE

Qu(e,t) = aZl(6,1) + bIF(E, D), (&1) €[0,1] x [0,00)
u(€,0) = sin(w€) £ €0,1]

New initial condition: u(&,0) =1 —e~¢, for £ € [0, 1]

u(¢,t) A, 1)

1

0.5 |

0 0.5 1 0 0.5 1 0 0.5 1
t t t

True EDMD Proposed
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Final Remarks & Outlooks

Conclusion:

@ Though Koopman operators are infinite-dimensional objects, they can be learned
efficiently, i.e.,

o directly from data,
o by solving finite-dimensional convex programs, and,
o without expert-type knowledge.

o A generalized representer theorem holds for a wide range of empirical loss functions,
regularizations, and constraints.

@ Side-information incorporation can improve learning Koopman operators.

Outlook:
@ Other candidates for regularization and constraints?
@ Other forms of side-information?

o Generalizing the main results, e.g., to the case of Banach spaces or dynamics with
control input?

Applying the introduced learning approach to real data?

Comparing with other Koopman operator learning methods?
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Thanks for your attention!

Mohammad Khosravi

Mohammad.Khosravi@tudelft.nl
https://www.tudelft.nl/staff/mohammad.khosravi/
https://www.dcsc.tudelft.nl/~mohammadkhosravi/
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