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Koopman Operator

– Koopman operators appear in theory and
practice of

fractals and chaos
fluid dynamics and PDEs
nonlinear dynamics
nonlinear control, e.g., in robotics
neural networks and DL
...

– This talk: Can we learn Koopman operators efficiently?
– Main reference:

M. Khosravi, “Representer theorem for learning Koopman operators”, in IEEE Trans-
actions on Automatic Control, vol. 68, no. 5, pp. 2995–3010, May 2023.
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Koopman Operator
Hilbert space H

Koopman

lifting
x0

x2

x1

x3

x+ = f(x) g+ = Kg

K2g

g

Kg

K3g

Euclidean space Rnx

Nonlinear dynamics
in finite dimension

Linear dynamics in
infinite dimension

Kg = g ◦f

Given space X and vector field: f : X → X , we have a dynamical system as
x+ = f(x)

Hilbert space of observables: H ⊂ RX := {g : X → R | g measurable}
Koopman operator

K : H −→H
g(·) 7−→ g(f(·)) (or Kg = g o f)

Koopman operator K ∈ L(H) defines a linear dynamical system on H
g+ = K g

Main feature: (Kng)(·) = g(f(f(· · · (f︸ ︷︷ ︸
n times

(·)) · · · )))
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Learning Koopman Operator

A trajectory of system: x0, x1, . . . , xns ∈ X
A set of observables: g1, g2, . . . , gng ∈ H
We are given

g1(x0), g1(x1), g1(x2), . . . g1(xns )
...

...
...

...
...

gl(x0), gl(x1), gl(x2), . . . gl(xns ) ⇝
...

...
...

...
...

gng (x0), gng (x1), gng (x2), . . . gng (xns )

trajectory x0, . . . , xns

through the lens of observable
gl : X → R

Data set: D :=
{

ykl := gl(xk)
∣∣ k = 0, . . . , ns, l = 1, . . . , ng

}
,

or D :=
{

(xk, ykl := gl(xk))
∣∣ k = 0, . . . , ns, l = 1, . . . , ng

}
Problem (Learning Koopman Operator)

Learn Koopman operator K ∈ L(H) using data D, i.e., find K̂ such that K̂g ≈ g o f .

Drawbacks of existing methods and problem formulations:
Not General
Not Rigorous – ad hoc and imprecise formulation
Indirect Approach – structural approximation + parameter estimation
Expert-type Knowledge – eigenfunctions are given!
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Learning Koopman Operator

Problem (Learning Koopman Operator)

Learn Koopman operator K ∈ L(H) using data D, i.e., find K̂ such that K̂g ≈ g o f .

Generic form of Koopman operator learning problem:

min
K∈L(H)

E(K) + λR(K)

s.t. K ∈ C
(⋆)

Main ingredients of the problem:
empirical loss E : L(H) → R ∪ {+∞} ⇝ to evaluate fitting on the data
regularization R : L(H) → R ∪ {+∞} ⇝ to avoid overfitting and/or for soft

incorporation of side-information
constraints C ⊂ L(H) ⇝ other constraints of interest or

hard incorporation of side-information

Question: Considering that (⋆) is an infinite-dimensional optimization problem,
when and how can ve solve it?
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Learning Koopman Operator – Tikhonov Regularization

Learning Koopman operator with Tikhonov regularization

min
K∈L(H)

ns∑
k=1

ng∑
l=1

(
ykl − (Kgl)(xk−1)

)2 + λ∥K∥2 (†)

The evaluation operator at x ∈ X

ex : H → R
g 7→ g(x) (recall that g : X → R)

Assumption I: The evaluation operators ex0 , . . . , exns−1 are bounded, i.e., there exists
v1, . . . , vns such that

⟨vk, g⟩ = exk−1 (g) = g(xk−1), for k = 1, . . . , ns, and any g ∈ H

V :=
[
⟨vk1 , vk2⟩

]ns

k1,k2=1
the Gram matrix of v1, . . . , vns

G :=
[
⟨gl1 , gl2⟩

]ng

l1,l2=1
the Gram matrix of g1, . . . , gng

Y :=
[
ykl

]ns, ng

k=1,l=1
=

[
gl(xk)

]ns, ng

k=1,l=1
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Learning Koopman Operator – Tikhonov Regularization

Theorem 1
– Under Assumption I, the learning problem

min
K∈L(H)

ns∑
k=1

ng∑
l=1

(
ykl − (Kgl)(xk−1)

)2 + λ∥K∥2 (†)

has a unique solution.
– The solution of (†) admits a parametric representation as

K̂ =
ns∑

k=1

ng∑
l=1

akl vk ⊗ gl

– The coefficient matrix A = [akl]ns, ng
k=1,l=1 ∈ Rns×ng is the solution of following finite-

dimensional convex optimization problem

min
A∈Rns×ng

∥VAG−Y∥2
F + λ ∥V

1
2 AG

1
2 ∥2
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Learning Koopman Operator with Image in a Subspace of Interest

Given W, a closed linear subspace of H, define Koopman learning problem as

min
K∈L(H)

ns∑
k=1

ng∑
l=1

(
ykl − (Kgl)(xk−1)

)2 + λ∥K∥2

s.t. K ∈ LW :=
{

S ∈ L(H)
∣∣ S(gl) ∈ W, for l = 1, . . . , ng

} (‡)

Theorem 2
– Under Assumption I, the learning problem (‡) has a unique solution. The solution of (‡)
admits a parametric representation as

K̂ =
ns∑

k=1

ng∑
l=1

akl (ΠWvk)⊗ gl

– The coefficient matrix A = [akl]ns, ng
k=1,l=1 ∈ Rns×ng is the solution of following finite-

dimensional convex optimization problem

min
A∈Rns×ng

∥WVAG−Y∥2
F + λ ∥WV

1
2 AG

1
2 ∥2

where WV is the Gram matrix of ΠWv1, . . . , ΠWvns .
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Connection to Extended Dynamic Mode Decomposition (EDMD)

EDMD approximate K by a finite-dimensional map U : G → G, where

G := span{g1, . . . , gng}.

So, U has a matrix representation in basis {g1, . . . , gng} as

Ugl =
ng∑

j=1

[M](j,l)gj , for l = 1, . . . , ng

EDMD employs data to estimate M as

M⋆ = argmin
M∈Rng×ng

ns∑
k=1

ng∑
j=1

(
(Ugj)(xk−1)− gj(xk)

)2

Replacing W with G in our approach, the Koopman learning problem becomes

min
K∈L(H)

ns∑
k=1

ng∑
l=1

(
ykl − (Kgl)(xk−1)

)2 + λ∥K∥2

s.t. K ∈ LG

where K ∈ LG :=
{

S ∈ L(H)
∣∣ S(gl) ∈ G, for l = 1, . . . , ng

}
.
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Connection to Extended Dynamic Mode Decomposition (EDMD)

Theorem 3

Define matrix CM⋆ as M⋆G−1, and, let operator K̂U ∈ L(H) be defined as

K̂U =
ng∑

j=1

ng∑
l=1

[CM⋆](j,l) gj ⊗ gl.

Then, we have
K̂U ∈ argmin

K∈LG

ns∑
k=1

ng∑
l=1

(
ykl − (Kgl)(xk−1)

)2
.

Also, the EDMD map U coincides with the restriction of K̂U to G, i.e., U = K̂U
∣∣
G

.

Theorem 4

For λ > 0, let K̂λ be the unique solution of

min
K∈LG

Jλ(K) :=
ns∑

k=1

ng∑
l=1

(
ykl − (Kgl)(xk−1)

)2 + λ∥K∥2.

Then, limλ↓0 K̂λ = K̂U and limλ→∞ K̂λ = 0, both in operator norm topology.
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Learning Koopman Operator – Generalized Representer Theorem

Generic form of Koopman operator learning problem:

min
K∈F

E(K) + λR(K)
s.t. K ∈ C

Ingredients of the problem:
empirical loss E : L(H) → R ∪ {+∞}
regularization term R : L(H) → R ∪ {+∞}
constraint set C ⊆ L(H)
regularization weight λ > 0
feasible set F = L(H) or LW , where W is a closed linear subspace of H.

Recall that: LW =
{

S ∈ L(H)
∣∣ S(gl) ∈ W, for l = 1, . . . , ng

}
representer vectors zk := vk or ΠW vk, for k = 1, . . . , ns
define Z := span{z1, . . . , zns }
define Z as Gram matrix of z1, . . . , zns
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Learning Koopman Operator – Generalized Representer Theorem

Consider index set I ⊆ {1, . . . , ns} × {1, . . . , ng}.

Define vector yI :=
[
ykl

]
(k,l)∈I

=
[
gl(xk)

]
(k,l)∈I

∈ R|I|.

Let ℓ : R|I| × R|I| → R ∪ {+∞} be a function such that

ℓ(·, yI) : R|I| → R ∪ {+∞}

is a proper convex function.

The generalized empirical loss Eℓ : L(H)→ R∪{+∞} can be defined in the following
general form

Eℓ(K) :=ℓ
([

(Kgl)(xk−1)
]

(k,l)∈I
, yI

)
=ℓ

([
(Kgl)(xk−1)

]
(k,l)∈I

,
[
ykl

]
(k,l)∈I

)
Various forms of empirical loss are in this form, including

Eℓ(K) =
ns∑

k=1

ng∑
l=1

(
ykl − (Kgl)(xk−1)

)2
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Learning Koopman Operator – Generalized Representer Theorem

Example I: empirical loss for outlier robust regression

Eℓ(K) or EL(K) :=
ns∑

k=1

ng∑
l=1

L(ykl − (Kgl)(xk−1)
)2

,

where, given ρ >, loss function L : R+ → R+ is defined as

Huber loss: L(e) =
{

e2, if |e| ≤ ρ

2|e|ρ − ρ2, otherwise

pseudo-Huber loss: L(e) = (e2 + ρ2)
1
2 − ρ

Example II: empirical loss based on robust optimization

Eℓ(K) or EU (K) := max
∆∈U

ns∑
k=1

ng∑
l=1

(
ykl − (Kgl)(xk−1)−∆(k,l)

)2

Example III: empirical loss based on distributionally robust optimization

Eℓ(K) or EP(K) := sup
P∈P

E∆∼P

[
ns∑

k=1

ng∑
l=1

(
ykl − (Kgl)(xk−1)−∆(k,l)

)2

]
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Learning Koopman Operator – Generalized Representer Theorem

Define augmented regularization R : L(H)→ R ∪ {+∞} as R := R+ δC

Assumption II: For any S ∈ L(H), we have R(ΠZ S ΠG) ≤ R(S).

Theorem 5
– Under the mentioned assumptions, if the learning problem

min
K∈F

Eℓ(K) + λR(K)
s.t. K ∈ C,

(⋆)

admits a solution, then it has a solution with following parametric representation

K̂ =
nz∑

k=1

ng∑
l=1

akl zk ⊗ gl

– When D := F ∩ dom(R) ∩ C is a non-empty, closed and convex set, R is convex and
lower semi-continuous, and R is coercive, then (⋆) admits at least one solution with the
given parametric representation.
– Additionally, if R is strictly convex on D, then the solution of (⋆) is unique.
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Learning Koopman Operator – Generalized Representer Theorem

Define augmented regularization R : L(H)→ R ∪ {+∞} as R := R+ δC

Assumption II: For any S ∈ L(H), we have R(ΠZ S ΠG) ≤ R(S).

Theorem 6
Let λ1, . . . , λm ∈ R+,

Ri : L(H)→ R+ ∪ {+∞} be a regularization function, for i = 1, . . . , m,
Cα ⊆ H, for each α ∈ A. (A: arbitrary index set)

Define
C := ∩α∈ACα and
Ri,α := λiRi + δCα , for α ∈ A.

If Assumption II is satisfied by Ri,α, for each α ∈ A and i = 1, . . . , m, then R : L(H)→
R+ ∪ {+∞} defined as

R :=
m∑

i=1

λiRi + δC

also satisfies Assumption II.
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Learning Koopman Operator – Frobenius Norm Regularization

Given orthonormal basis {bk}∞
k=1, Frobenius norm of operator K

∥K∥2
F =

∞∑
k=1
⟨bk, K∗Kbk⟩ =

∞∑
k=1
∥Kbk∥2

The problem of learning Koopman operator with Frobenius norm regularization

min
K∈F

Eℓ(K) + λ∥K∥2
F (†)

Theorem 7
– Under previous assumptions and if λ > 0, the optimization problem (†) admits a unique
solution K̂ with parametric form

K̂ =
nz∑

k=1

ng∑
l=1

akl zk ⊗ gl

– If Eℓ(K) =
∑ns

k=1

∑ng
l=1

(
ykl − (Kgl)(xk−1)

)2
, then A = [akl]nz, ng

k=1,l=1 is the solution of
following finite-dimensional convex quadratic program

min
A∈Rnz×ng

∥ZAG−Y∥2
F + λ∥Z

1
2 AG

1
2 ∥2

F (†′)

There is a closed-form solution for (†′), and thus, for (†).
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Learning Koopman Operator – Rank Constraint

The problem of learning Koopman operator with rank constraint
min
K∈F

Eℓ(K)

s.t. K ∈ C :=
{

S ∈ F
∣∣ rank(S) := dim(S(H)) ≤ r

} (‡)

Theorem 8
Under previous assumptions, if the optimization problem (‡) admits a solution, then it has
a solution K̂ with parametric form

K̂ =
nz∑

k=1

ng∑
l=1

akl zk ⊗ gl

If Eℓ(K) =
∑ns

k=1

∑ng
l=1

(
ykl − (Kgl)(xk−1)

)2
, then A = [akl]nz, ng

k=1,l=1 is the solution of
following finite-dimensional optimization problem

min
A∈Rnz×ng

∥ZAG−Y∥2
F,

s.t. rank(ZAG) ≤ r
(‡′)

Using Eckart-Young-Mirsky Theorem, we can solve (‡′), and subsequently, (‡).
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Learning Koopman Operator – Nuclear Norm Regularization

Nuclear norm of operator K

∥K∥∗ = sup
{
|tr(CK)|

∣∣ C compact, ∥C∥ ≤ 1
}

The problem of learning Koopman operator with nuclear norm regularization

min
K∈F

Eℓ(K) + λ∥K∥∗ (⋆)

Theorem 9
– Under previous assumptions and if λ > 0, the optimization problem (⋆) admits a
solution K̂ with parametric form

K̂ =
nz∑

k=1

ng∑
l=1

akl zk ⊗ gl

– If Eℓ(K) =
∑ns

k=1

∑ng
l=1

(
ykl − (Kgl)(xk−1)

)2
, then A = [akl]nz, ng

k=1,l=1 is the solution of
following finite-dimensional convex program

min
A∈Rnz×ng

∥ZAG−Y∥2
F + λ∥Z

1
2 AG

1
2 ∥∗
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Learning Koopman Operator – Stability Side-Information

Lemma 10
Let xeq = 0 be an equilibrium point, i.e., xeq = f(xeq). Then, under certain conditions, xeq
is a globally stable equilibrium point if, for some ε > 0, we have

∥K∥ ≤ 1− ε.

The problem of learning stable Koopman operator

min
K∈F

Eℓ(K) + λR(K)
s.t. K ∈ C

∥K∥ ≤ 1− ε

(⋆⋆)

Theorem 11
Under previous assumptions, the existence, uniqueness and parametric representation

K̂ =
nz∑

k=1

ng∑
l=1

akl zk ⊗ gl

are guaranteed for the solution of learning problem (⋆⋆).
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Learning Koopman Operator – Stability Side-Information

Solving a finite-dimensional convex program with quadratic objective function and
LMI constraints when

i. R(·) = ∥ · ∥2 or ∥ · ∥2
F

ii. Eℓ(K) =
∑ns

k=1

∑ng
l=1

(
ykl − (Kgl)(xk−1)

)2

iii. no additional constrain

The optimization problem
– for the case of R(·) = ∥ · ∥2

min
B∈Rnz×ng , β∈R

∥Z
1
2 BG

1
2 − Y∥2

F + λβ2

s.t.
[

βIng B
BT βInz

]
⪰ 0,

β ≤ 1 − ε,

– for the case of R(·) = ∥ · ∥2
F

min
B∈Rnz×ng , β∈R

∥Z
1
2 BG

1
2 − Y∥2

F + λ∥B∥2
F

s.t.
[

βIng B
BT βInz

]
⪰ 0,

β ≤ 1 − ε.
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Example I: Learning Koopman Operator – Regularization Weight Sweep

Nonlinear dynamical system
x1,k+1 = µ1x1,k

x2,k+1 = µ2x2,k + (µ2
1 − µ2)x2

1,k

Single trajectory, 60 samples, and three observables ⇝ three eigenvalues
Regularization term: ∥ · ∥2, ∥ · ∥2

F, ∥ · ∥∗

Regularization weight λ sweep: 0←→∞
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Example II: Learning Koopman Operator – Right Choice for Regularization

Van der Pol oscillator

ẋ1 = x2

ẋ2 = µ(1− x2
1)x2 − x1

Two trajectories
Monte Carlo experiment: 120 noisy realizations
SNR levels: 10 dB, 20 dB, 30 dB
MSE on a set of test functions
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Example III: Learning Koopman Operator – Stability Side-Information

Dynamical system: Nicholson-Bailey model for host-parasitoid dynamics

Side-information: stability
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Example IV: Learning Koopman Operator – A PDE Case

Dynamical system: advection-diffusion PDE{
∂u
∂t

(ξ, t) = a ∂u
∂ξ

(ξ, t) + b ∂2u
∂ξ2 (ξ, t), (ξ, t) ∈ [0, 1]× [0,∞)

u(ξ, 0) = sin(πξ) ξ ∈ [0, 1]

New initial condition: u(ξ, 0) = 1− e−ξ, for ξ ∈ [0, 1] 

 

 

 

True
 

ProposedEDMD
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Final Remarks & Outlooks

Conclusion:
Though Koopman operators are infinite-dimensional objects, they can be learned
efficiently, i.e.,

directly from data,
by solving finite-dimensional convex programs, and,
without expert-type knowledge.

A generalized representer theorem holds for a wide range of empirical loss functions,
regularizations, and constraints.
Side-information incorporation can improve learning Koopman operators.

Outlook:
Other candidates for regularization and constraints?
Other forms of side-information?
Generalizing the main results, e.g., to the case of Banach spaces or dynamics with
control input?
Applying the introduced learning approach to real data?
Comparing with other Koopman operator learning methods?
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Thanks for your attention!

Mohammad Khosravi

Mohammad.Khosravi@tudelft.nl
https://www.tudelft.nl/staff/mohammad.khosravi/
https://www.dcsc.tudelft.nl/∼mohammadkhosravi/
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