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Linear stochastic systems
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Representation Identification

IO stochastic model, e.g. Box-Jenkins

𝒚 =
𝐵

𝐹
𝑢 +

𝐶

𝐷
𝒆

Prediction Error Minimization (PEM)
[1]

State-space models, e.g. 
𝒙+ = 𝐴 𝒙 + 𝐵 𝑢 + 𝐸 𝒗
𝒚 = 𝐶 𝒙 + 𝐷 𝑢 + 𝐹 𝒆

PEM-SS [1] 
Subspace (PBSID, SS-ARX) [2,3]

[1] Ljung, Lennart. "System Identification: Theory for the User." Prentice Hall PTR, 1998.
[2] A. Chiuso. The role of vector auto regressive modeling in predictor based subspace identification. Automatica, 43(6):1034–1048, 2007.
[3] Katayama, Tohru. Subspace methods for system identification. Vol. 1. London: Springer, 2005.



Nonlinear stochastic systems
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Representation Identification

Nonlinear stochastic state-space
𝒙+ = 𝑓 𝒙, 𝑢, 𝒆
𝒚 = ℎ(𝒙, 𝑢, 𝒗)

Particle Smoothers[4]
Bayesian Methods[5]

Challenging
e.g. computationally

(Monte Carlo)

Probability distributions

𝑝 𝒙+ = ∫ 𝑝 𝒙+ 𝒙, 𝑢 𝑝 𝒙 𝑑𝒙
𝑝 𝒚 = ∫ 𝑝 𝒚 𝒙, 𝑢 𝑝 𝒙 𝑑𝒙

[4] Schön, Thomas B., Adrian Wills, and Brett Ninness. "System identification of nonlinear state-space models." Automatica (2011)
[5] Ninness, Brett, and Soren Henriksen. "Bayesian system identification via Markov chain Monte Carlo techniques." Automatica 46.1 (2010): 40-51.



Nonlinear stochastic: Meta-state-space
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Nonlinear stochastic state-space
𝒙+ = 𝑓 𝒙, 𝑢, 𝒆
𝒚 = ℎ(𝒙, 𝑢, 𝒗)

Probability distributions

𝑝 𝒙+ = ∫ 𝑝 𝒙+ 𝒙, 𝑢 𝑝 𝒙 𝑑𝒙
𝑝 𝒚 = ∫ 𝑝 𝒚 𝒙, 𝑢 𝑝 𝒙 𝑑𝒙

have a meta-state-space representation

Systems represented as

Meta-state-space:
Deterministic NL-SS!

𝑧𝑡 ∈ ℝ𝑛𝑧 is the meta-state

Exact representation

Efficiently identified
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Derive 
meta-state 
for linear 
systems

Generalize to  
nonlinear 
systems

Identification 
method

Benchmark 
results

The route



Derivation meta-state 
for linear system

Observe that 

and we know that
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& Gaussian



Derivation meta-state 
for linear system

Thus:
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Derivation meta-state 
for linear system

Observation: we can create a new 
state-space equation by collecting 
into vector 𝑧𝑡 = 𝑉𝑒𝑐 𝜇𝑡 , Σ𝑡

𝑧𝑡+1 = 𝑓𝑧(𝑧𝑡 , 𝑢𝑡)
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Comparison state-space and new state-space

State-space

• Stochastic state transition

• Linear

New state-space

• Deterministic state transition

• Nonlinear
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𝑧𝑡+1 = 𝑓𝑧(𝑧𝑡 , 𝑢𝑡)𝒙𝑡+1 = 𝐴𝒙𝑡 + 𝐵𝑢𝑡 + 𝒆𝑡

Same IO behaviour 𝑝 𝒚𝑡



The parameterization 
is a mapping to a new 
space
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Meta-state-space



Connecting the dots…

𝑧𝑡+1 = 𝑓𝑧(𝑧𝑡 , 𝑢𝑡)

𝑧𝑡: meta-state-space

Next a mathematical derivation
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Meta-state-space
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Functional notation
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Assume existence mapping/parametrization

Injective

Parameter vector 𝑧𝑡
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Both sides



State-space Meta-state-space

Same IO behaviour

Stochastic dynamics Deterministic dynamics

Order 𝑛𝑥 Order 𝑛𝑧 (often > 𝑛𝑥)
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How harsh of an assumption is it?

• More moments

• More particles

• More basis functions
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Increasing 
𝑛𝑧

Differences get arbitrarily small

Choose 𝑀 to be any
universal approximator



Meta-state-space for identification
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Meta-state-space is 
interesting in a 

mathematical sense

How can we make use of 
meta-state-space for 

system identification?
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Parameterize meta-state-space Dataset

E.g. 𝜃 is the network parameters 
𝑧𝑡 and 𝑢𝑡 is the input to that network. Note: no joint output probabilities 𝑝 𝑦1, 𝑦2

Maximum a posteriori (MAP) estimation

We never define!

Meta-state-space for identification



Simulation example

𝑒𝑡 white uniform from -0.5 to 0.5 

𝑢𝑡 white normal 𝜎𝑢 = 2

Data:

Training: 1 sequence of 300K

Test: 5000 trajectories of 4K
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Sum of normal distributions Where the weight, mean and std 
are neural networks with the 
appropriate constraints.

Also a ANN:
𝑛𝑧 = 3

Output distribution parameterization



Results: Visual inspection
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Free-run simulation results

Meta-state-space model close to 
the system

Many small details captured!



Results: performance

Measure: 

Mean log-likelihood (larger is better)

Meta-state-space model is close to 

the theoretical limit!

Model/Baseline Mean 
log-likelihood 

Fixed mean,
Fixed output noise Gaussian

-2.18

Modelled mean, 
Fixed output noise Gaussian

1.04

Modelled mean,
Modelled noise Gaussian

1.56

Meta-state-space model 1.67

Est. theoretical limit 1.73
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Wiener-Hammerstein Process Noise[1]

Only use triangular-shaped multisine data

76 sequences with total samples 498K

Similar setup as before, 𝑛𝑧 = 9

23[1] M. Schoukens and J.P. Noël, Three Benchmarks Addressing Open Challenges in Nonlinear System Identification, 20th World Congress of the 
International Federation of Automatic Control, pp.448-453, Toulouse, France, July 9-14, 2017, doi: 10.1016/j.ifacol.2017.08.071.

Benchmark Results
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Model/Baseline Mean 
log-
likelihood 

Fixed mean,
Fixed output 
noise Gaussian

0.64

Meta-state-
space model

0.99

Limit <1.1

Benchmark Results



Meta-state-space 
representation

• Exact representation
• Determenistic

Derived by mapping 
state function space

𝑧𝑡 as parameterization 
of the state distribution 
function space

Effective 
identification exists

ANN Model with MAP 
close to theoretical limit
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Pre-print: https://arxiv.org/abs/2307.06675
Toolbox: https://github.com/GerbenBeintema/metaSI

Take-aways form this presentation

https://arxiv.org/abs/2307.06675
https://github.com/GerbenBeintema/metaSI
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