A Novel Coaxial Borehole Heat Exchanger: Description and First Distributed Thermal Response Test Measurements

MSc. José Acuña
(PhD. candidate)

Prof. Björn Palm

Ground Source Heat Pumps

- Very common system for heating and cooling buildings
- Common method to exchange heat with the ground "Borehole Heat Exchangers"

www.svepinfo.se
Borehole Heat Exchanger (BHE)

- Three parts to be considered
 - Secondary Fluid
 - Tubes
 - Filling material
 - These represent a thermal resistance that must be minimized

Borehole Heat Exchanger installations

- **U-pipe**
 - Depth = 260 m
 - Groundwater = 5.5 m

- **Annular coaxial**
 - Depth = 190 m
 - Groundwater = 3 m
Distributed Temperature Measurements in BHEs

Description of the Coaxial BHE
The coaxial installation procedure

Calibration of optical fiber cable

Ice bath

Fiber optic cable
Energy capsule
Borehole wall

Cable length [m]

Temperature [°C]

Cable length [m]
Distributed Thermal Response Test

- Distributed temperature measurements during TRT
- The TRT is evaluated at different sections along the depth

DTRT in U-pipe BHE
First DTRT in Coaxial prototype

Conclusions

- A Distributed Thermal Response Test allows evaluating TRTs along the borehole depth

- U-pipe BHEs have several constrains
 Measurements indicate thermal shunt flow between channels and varying pipe position along the BHE depth

- A novel coaxial annular Borehole Heat Exchanger has been suggested

- The installation of the coaxial BHE is relatively simple

- Temperature measurements in a U-pipe BHE and a Coaxial BHE were carried out during DTRTs
Conclusions

• The coaxial BHE prototype can potentially reduce the temperature difference between the secondary fluid and the ground

• A measurement of the borehole wall temperature in the coaxial BHE illustrates how effective the heat transfer is through the annular channel

• Future work:
 Complete analysis of the DTRT in the coaxial design at different flows
 Testing different central pipe alternatives

Thank you!

Contact us:
Department of Energy Technology
- Division for applied thermodynamics and refrigeration

KTH
Brinellvägen 68,
Tel: 08-790 89 41
Mob: 076 232 00 08
Email: jose.acuna@energy.kth.se

Our project homepage
www.energy.kth.se/energibrunnar