

Preliminary programme

22nd Nordic Seminar on Railway Technology

18-19 June 2024 at KTH Royal Institute of Technology

	June 17, 2024				
15:00-	Desistration				
18:00	Registration	D-Ljusgård			

June 18, 2024						
9:00		R	egistration		D-Ljusgård	
10:00	Opening remarks Prof. Sebastian Stichel, Director of KTH Railway Group Prof. Annika Borgenstam, KTH's Vice President for Research and recorded note from the Director General of Trafikverket				D1	
10:30	Gi	Plenary session 1: Vision 2050 for the Swedish Railways Gustaf Engstrand, Tågföretagen and Linda Thulin, Trafikverket				
11:00	Plen	Plenary session 2: Greening Technologies, Peter Mellberg, Alstom				
11:30		Syster O Bror				
Room	D32 D33 D34 D35				D42	
Session 1	Infrastructure 1	Wheel/Rail Interaction 1	Laboratory Development & Education	Rolling Stock	Maintenance 1	
12:50	64: Deterioration Factors for Feasible Rail Track Solutions	83: Influence of track parameters on curve squeal	123: Making better use of railway research	76: Load collective design for fatigue analysis of railway vehicle components	94: Wheel Flat Detection and Length Estimation using Data from Multiple Wheel Impact Load Detectors	

13:10	12: Global level	118: Recent	120: CHARMEC's novel	13: An abnormal vibration	98: Condition
	assessments of	development of the	brake roller test rig	phenomenon and the	Monitoring of
	track geometry	multibody dynamics		control strategies of	Railway Catenary
	quality along the	on the efficient		vehicle-mounted motor	System
	Western Main Line	modelling of train-		cooling system in a high-	-
	in Sweden	track interaction		speed train	
13:30	41: Train Based	60: The effect of	3: The KTH Roller Rig	22: Life extension of a	18: Optimising wheel
	Automated	freight wagon bogie		cracked tram carbody	and rail economy by
	Inspection for	on track loads –			non-uniform rail
	Railway Track	verification process			grinding
	Components	of freight wagon			
		models			
13:50	89: Predicting	42: Top-of-rail	106: Systems	25: On the predictive	127: Simulation-
	Climatic Failures in	lubricants for the	engineering applied in	capabilities of Hot-Box	Based Assessment of
	Railway	wheel-rail contact	rail infrastructure – a	monitoring systems	Railhead Repair
	Infrastructure		systematic literature		Welding Process
	utilizing Machine		search		Parameters
	Learning				
14:10	70: Economies of	72: Rail side wear of	20: Understanding	71: Long term on-track	57: Advancements in
	scale and scope in	switch tip area and its	wheel damage during	test with EPS wheel	Railway Ballast
	LCC for Switches &	effect on derailment	railway shoe-braking:	profile	Inspection
	Crossings	risk	insights from innovative		Methodologies and
	_		small-scale testing		Technologies: A
					Comprehensive
					Literature Review
14:30			Fika		D-Ljusgård
Room	D32	D33	D34	D35	D42
Session	Infrastructure 2	Wheel/Rail	Signaling and	Energy, Environment,	Maintenance 2
2	Infrastructure 2	Interaction 2	Communication	and Climate 1	Maintenance 2
15:00	68: Determination	93: Comparison of	8: Analyzing challenges	30: Cost modelling-	23: A parallel high-
	of the moment of	optimisation	and strategies in	based railway	capacity and fast
	inertia for different	algorithms for wheel	integrating ETCS with	decarbonization	calculation method
	types of	profile design for a	existing signaling	schemes applicability	for assessing track
	superstructures for	high-speed passenger	systems in rail transport.	analysis	quality index in
	track stability	train			infrastructure
	considerations				maintenance

	about railway track drainage – What	Laser Clad Rails	Telecommunication Infrastructure and	Swedish steel-post wood-panel noise barrier	identifying and locating rail
	was learnt?		Security for Railway Emergency Messages	under aerodynamic load from high-speed train	corrugation based on multi-source detection data feature fusion
15:40	35: Influence of particle arrangement and model dimensions on railway simulations in discrete element method	11: Optimisation of crossing panel design for reduced environmental footprint (WR contact/Environment)	2: Track circuit model validated against test- track data to explore impact of rail contamination on train detection	75: Survey on problem formulation for railway energy optimisation including OESS	27: RCF crack propagation predictions
16:00			Leg stretcher		
16:10	125: Assessing Finnish track health through in-service train-based track condition monitoring	54: A more data driven approach to friction management, using a new railhead tribometer	39: Train Localization During GNSS outages: Exploiting Track Geometry Constraints and IMU Sensor Data	59: Using sensor data to assist decision-making for energy saving and capacity increasing	29: Damage Detection for Aging Railway Bridges: A Monitoring and Machine Learning Approach
16:30	28: A camera shake correction method for optical measurements in railways based on IMU sensors	115: A Machine Learning Approach for Rail Friction Estimation	96: On the Plausibility of using Existing Cellular Networks as Bearers of Train Signalling	116: Energy efficient operations of Railway Switch heaters	103: Improved rules and regulations of damaged wheels
16:50	104: A framework for climate adaptation of railway infrastructure	81: Low Rail RCF Causes for Heavy Haul Operation	108: Railway Signal Digitalization with ERTMS and PTC, Industry 4.0 Expectations and Reality	61: A study on the metro train type influence on the particulate emissions and pollution cost on an underground platform	80: Remote monitoring of the Iron Ore Line with InSAR
17:10	Demonstration of the KTH Roller Rig (Max 40 people)				Teknikringen 8
19:00	Boat cruise and dinner				Strandvägen kajplats 15

9:00	Plenary Session 3: G the future Stockholm	D1			
9:30	Plenary Session 4: A Prof. Emeritus Bo-Le	D1			
10:00			Fika		D-Ljusgård
Room	D32	D33	D34	D35	D42
Session 3	Infrastructure 3	Traction and Braking 1	Vehicle Dynamics and Stability 1	Energy, Environment, and Climate 2	Operations and Traffic Planning 1
10:30	58: Risk of derailment due to entrapped foreign objects in railway switches	130: Long-term performance of railway brake discs for high-speed postal wagons: wear and fatigue	4: Research on the impact of improved coupler structure on the dynamic performance of 20,000-ton heavy-haul train	10: Innovative Initiatives of Italian Railway State Group for Sustainable Mobility	117: Challenges related to data collection and availability for railway management
10:50	91: Estimating residual risks for rail breaks	1: Friction, wear and particle emissions from copper-based train brakes	44: Longitudinal Dynamics of Heavy- Haul Trains: Impact of Traction Rod Arrangements on Cyclic Braking Conditions	38: Evaluation of low- cost air quality sensors at underground train platforms.	7: Train Dispatcher in the Cloud: An efficient option for train operations
11:10	131: Whole System Modelling of Switches & Crossings	85: Modelling of traction motors and power electronics for passive cooling analysis	46: Improved control system of active wheelset steering in turnouts with preview	107: Railway curve squeal field measurements and tonal analysis	21: Learning from reliability and maintainability for predicting generation and propagation of trains' delays
11:30	105: Dynamic interaction between pantograph and catenary – possible applications for simulation tools	100: Compatibility Analysis of Rail Vehicle and Traction Power Systems Based on the European Infrastructure Environment	32: Running Dynamics of the Self-Steering Single-Axle Running Gear	36: Carbon footprint and possibilities of using recycled plastics in railway structures	50: Predicting train delay based on Random Forest

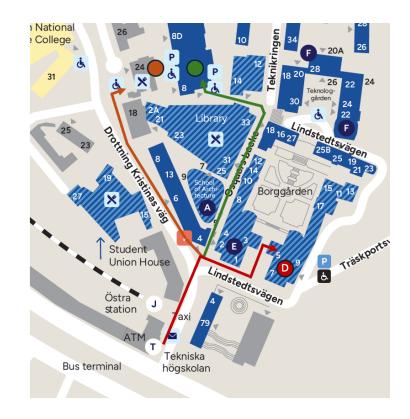
11:50	34: 3D DEM-based ballasted track and rail vehicle interaction: model construction verification and analysis	62: Braking performance of freight trains	77: Stability of Six-Axle Railroad Cars on Dedicated Freight Corridor of Indian Railway	111: A ground-borne noise prediction model for railway traffic in tunnels in bedrock	129: Integrated Yard and Terminal Departure Prediction
12:10			Lunch		Syster O Bror
Room	D32	D33	D34	D35	D42
Session 4	Infrastructure 4	Data Analytics and Automation	Vehicle Dynamics and Stability 2	Energy, Environment, and Climate 3	Emerging Technologies 1
13:30	95: Instrumenting steel-structure railway bridges towards improved maintenance decision support using multi-sensor data fusion	17: Data quality analysis of China high-speed rail inspection	43: Multidisciplinary Coupling Approach for Dynamic Response Analysis of Maglev Trains using Panel Aerodynamics	88: Predicting the sound radiation from track vibrations for auralisation	87: Metaverse for Maintenance in the Railway Industry
13:50	49: Development of a measuring method for determining the displacement and load distribution behaviour of expansion joints on bridges	92: Leveraging ISO Standard 81346 for Enhanced Railway Asset Management: A Cross-Organizational Approach for Big Data Analytics	101: Multi-Body Dynamic Fault Simulation in Primary Suspension Systems and Convolutional Neural Network based Diagnosis	47: RoboPV – Feasibility Study of a Track- Integrated Photovoltaic Power Plant	37: Real-Time Semantic Railway Point Cloud Acquisition via Deep Learning: A Camera- Based Approach
14:10	86: Investigating railway bridge dynamic factors through measurements	52: Virtual Ground Truth - Towards Reliable Obstacle Detection	119: Influence of Coupler System Degradation on Longitudinal Dynamics and Running Safety of Rakes	19: Grid-friendly high- power charging system for battery-electric rail vehicles	5: Development Process of a Sensor System for Obstacle Detection on Railways using Virtual Reality

14:30	31: Quantifying error in finite- element models of Lundamo railway bridge	53: A new testing method based on Model-Based Testing for the Railway Onboard Control System		67: Inclusion of rail and wheel roughness in noise mapping calculations with Nord2000	79: Game-based Cybersecurity: An Approach Towards Resilient Railway
14:50			Fika		D-Ljusgård
Room	D32	D33	D34	D35	D42
Session 5	Infrastructure 5	Traction and Braking 2	Emerging Technologies 2	Maintenance 3	Operations and Traffic Planning 2
15:10	51: Ballasted Track Simulator – a new tool for simulating dynamic loading behaviour of railway structures	16: Thermomechanics of the brake – wheel – rail system: Results from two tread brake roller rigs	99: FutuRe Innovative solutions for Regional rail services	24: Prediction of differential track settlement in a transition zone using a calibrated non-linear track model	74: Improving utilisation of rail freight routes by optimised routing method
15:30	102: Effect of FFU and UPS sleepers on low frequency vibration in soft soil areas	56: Experimental characterization of magnetic track brakes	33: Automation of Industrial Sidings by Using Road-Rail Vehicles as Automated Guided Vehicles	69: Project for rail head conditioning with Al	78: Evaluation of train integrity concepts based on various criteria
15:50	48: Simplified dynamic soil- structure interaction of a three-span and a single-span high- speed railway bridge with integrated retaining walls	109: Modelling the temperature development of a railway brake disc	84: Development and application of heavy- duty hydrogen energy hybrid shunting locomotive		82: Benefits and drawbacks of integrating Maglev- derived systems in the design phase of new railway lines
16:20		Clos	ing remarks		D1

Venue

The seminar takes place at the D-building, an iconic courtyard building on the KTH main campus. The plenary sessions will be in D1. Registration and the coffee breaks will be in the D-ljusgård.

Address: Lindstedtsvägen 9, Stockholm, Sweden


Lunch: Syster O Bror Lab visit: Teknikringen 8

Boat cruise and dinner

Departure: 19:00 at Strandvägen kajplats 15 **Arrival:** 23:00 at Strandvägen kajplats 15

Contact

railwaygroup@kth.se kth.se/railway-technology-2024

Organised by

KTH Railway Group Royal Institute of Technology