

When Near Becomes Super Far: From Rayleigh to **Optimal Near / Far-Field Boundaries**

Sajad Daei

May 17, 2025

Joint work with Gabor Fodor * † and Mikael Skoglund †

† KTH Royal Institute of Technology

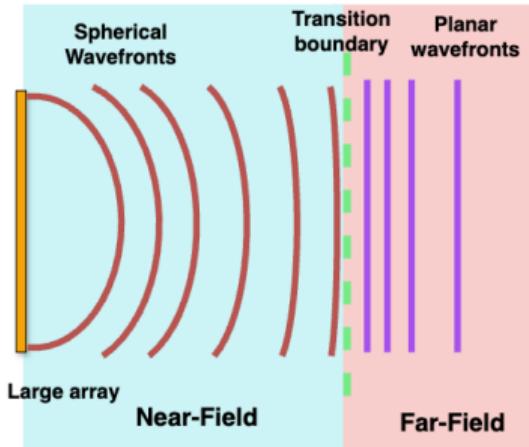
* Ericsson Research, Stockholm

Workshop on Near-field Communications and Sensing

Roadmap

- ① History: Rayleigh rule
- ② Motivation: Why Rayleigh is no longer enough
- ③ Mismatch metrics & **optimal** boundaries
- ④ Key numerical insights
- ⑤ Take-aways for Hardware, DSP, and network layers

History: Rayleigh Distance


Definition

- Distance from an antenna/aperture beyond which wavefronts can be approximated as planar (Far-Field).
- Marks transition from Near-Field (spherical) to Far-Field (planar) behavior.

Formula:

$$R_{\text{Ray}} \triangleq \frac{2D^2}{\lambda}$$

- D : Aperture diameter or maximum dimension
- λ : Wavelength

Visualization of near and far fields

Why It Matters

Understanding transition distance is crucial for accurate sensing, communications and beamforming design, as it defines the region of validity for planar-wave assumptions.

⌚ Why Rayleigh Is No Longer Enough

⌚ Rayleigh's 1903 Rule

$$R_{\text{Ray}} = \frac{2D^2}{\lambda}$$

- Assumes **max** phase error $\frac{\pi}{8}$ (center-edge).
- **6G mmWave/sub-THz:**
 $\lambda \approx 1 \text{ mm}$, $D \approx 1 \text{ m}$
 $\Rightarrow R_{\text{Ray}} \approx 2 \text{ m}$ (**indoor link!**)

⚠ If you rely on R_{Ray}

- ⬇ **Array-gain drop:** 3 to 6 dB
- ⬇ **Localization bias error:** 5–20 cm bias
- ⬇ **Pilot overhead:** doubled for UL channel estimation

✖ Engineering Insight

Rayleigh distance is an outdated **geometric** criterion. Modern 6G systems need **metric-driven** boundaries for array gain, spectral efficiency, and localization accuracy.

Near-Field Opportunities

3-D beam focusing

~1 cm

indoor positioning—centimetre-level without UWB.

Depth-resolved MU-MIMO: users on the *same* AoA but different ranges become separable \Rightarrow extra spatial DoF.

Zero-overhead sensing: narrow-band TX already encodes range/Doppler in spherical curvature \implies free radar snapshot.

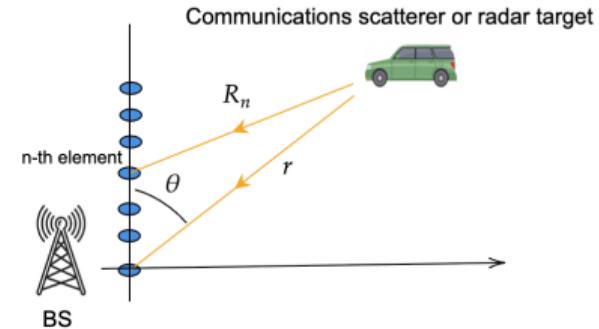
WiFi Channel Model: Near vs. Far Field

Uplink Scenario (LoS, ULA)

Radiative Near-Field (Spherical Wavefront):

$$\mathbf{h}_{\text{NF}}[n] = \sqrt{g_T g_R[n]} \frac{\lambda}{4\pi R_n} e^{-jk_\lambda R_n}$$

Far-Field (Planar Wavefront):


$$\mathbf{h}_{\text{FF}}[n] = \sqrt{g_T g_R} \frac{\lambda}{4\pi r} e^{-jk_\lambda(r - nd \cos \theta)}$$

Range definition:

$$R_n = \sqrt{r^2 + (nd)^2 - 2rnd \cos \theta}, \quad n = 0, \dots, N_r - 1$$

Wave number: $k_\lambda \triangleq \frac{2\pi}{\lambda}$

Assumptions: Isotropic elements, free space channel model

System Setup Illustration

⚖️ 4 Application-Driven “Mismatch Metrics”

Worst-case element-wise Mismatch

$$E_{\ell_\infty}(r) \triangleq \max_{n,\theta} \left| \frac{1}{R_n} e^{-jk_\lambda(R_n-r)} - \frac{1}{r} e^{jk_\lambda nd \cos \theta} \right|$$

Normalized ℓ_2 Mismatch

$$E_{\ell_2}(r) \triangleq \max_{\theta} \frac{\|\mathbf{h}_{\text{NF}} - \mathbf{h}_{\text{FF}}\|_2}{\|\mathbf{h}_{\text{NF}}\|_2}$$

NMSE of model-based estimators (e.g., compressed sensing)

$$\text{NMSE} \triangleq \max_{\theta} \mathbb{E}_{\mathbf{W}} \left[\frac{\|\mathbf{h}_{\text{NF}} - \hat{\mathbf{h}}\|_2^2}{\|\mathbf{h}_{\text{NF}}\|_2^2} \right] = \underbrace{(1 - \eta)}_{\triangleq \text{NMSE}_{\text{bias}}} + \frac{1}{L\rho_p \|\mathbf{h}_{\text{NF}}\|_2^2}$$

Spectral-eff. loss

$$E_{\text{SE}}(r) \triangleq \max_{\theta} \log_2 \left(\frac{1 + \rho_d G}{1 + \frac{G\eta\rho_d}{L\rho_p} + \eta G + \frac{1}{L\rho_p}} \right)$$

ⓘ Notations (quick view)

- $G \triangleq \|\mathbf{h}_{\text{NF}}\|_2^2$
- $\eta = \frac{|\mathbf{h}_{\text{NF}}^H \mathbf{h}_{\text{FF}}|^2}{\|\mathbf{h}_{\text{NF}}\|_2^2 \|\mathbf{h}_{\text{FF}}\|_2^2}$ is the array gain efficiency
- ρ_d and ρ_p are the data and pilot SNR. L is the number of pilots.

“Pick the metric that aligns with your layer – and stay outside its red zone!”

Metric-Aligned “Traffic Light” for Practical Design

Hardware

- Calibration budgets
- PA/LNA linearity
- ADC dynamic range

Baseband DSP

- NMSE floor (-13 dB)
- Fisher-info positioning
- Pilot reuse & grouping

Network Layer

- SE margin / MCS tables
- Cell-edge robustness
- ISAC resource split

💡 Near-field is a *resource-leverage* depth, curvature, and power rather than masking them.

Optimal Transition Distances

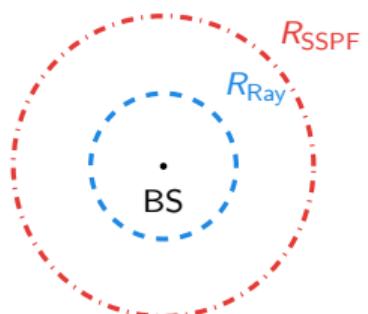
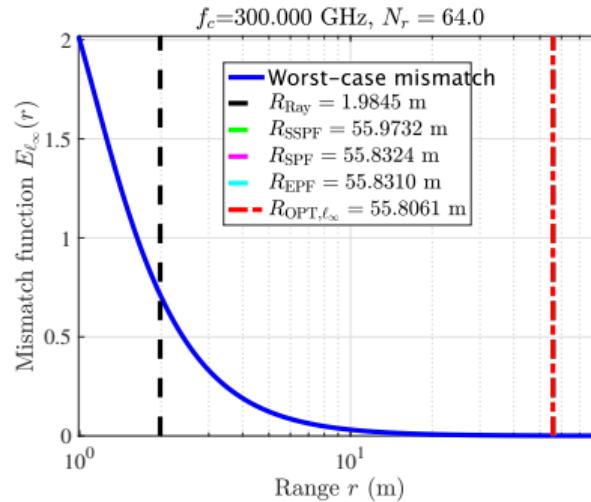
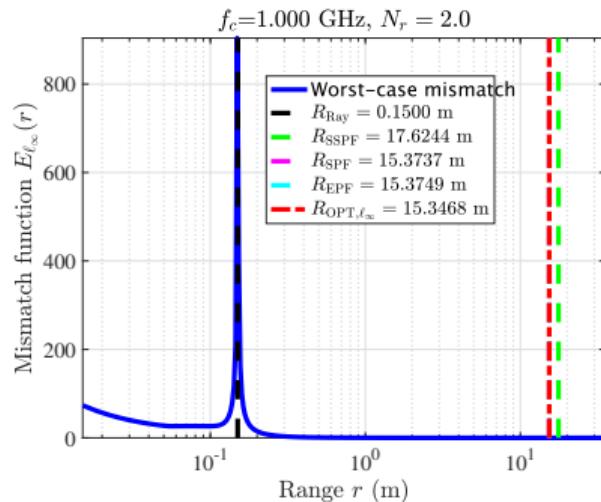
Optimal transition distance

$$R_{\text{OPT},\ell_\infty}, R_{\text{OPT},\ell_2}, R_{\text{OPT,SE}} = \min\{r : E(r') \leq \text{tolerance} \ \forall r' \geq r\}$$

- Closed-form boundaries for Worst-case Mismatch:

$$R_{\text{EPF}} \triangleq \inf \left\{ r \geq 0 : \sup_{r' \geq r} \left[\frac{D^2}{2r'^3} + \frac{2}{r'} \left| \sin \left(\frac{k_\lambda D^2}{4r'} \right) \right| \right] \leq \delta_\infty \right\}. \quad (1)$$

$$R_{\text{SPF}} \triangleq 2 \sqrt{\frac{k_\lambda D^2}{6\delta_\infty}} \cos \left(\frac{1}{3} \arccos \left(\frac{3}{2k_\lambda} \sqrt{\frac{6\delta_\infty}{k_\lambda D^2}} \right) \right) \quad (2)$$

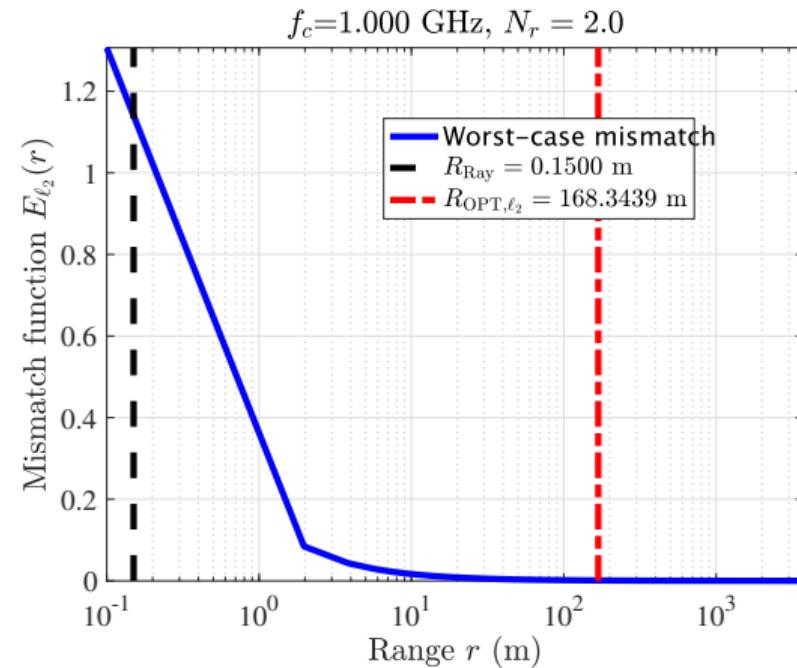



$$R_{\text{SSPF}} \triangleq \sqrt{\frac{k_\lambda D^2 + D}{2\delta_\infty}}. \quad (3)$$

Our metrics provide precise, **application-specific** boundaries!

Numerical Insights and Comparisons

Worst-case element-wise Mismatch

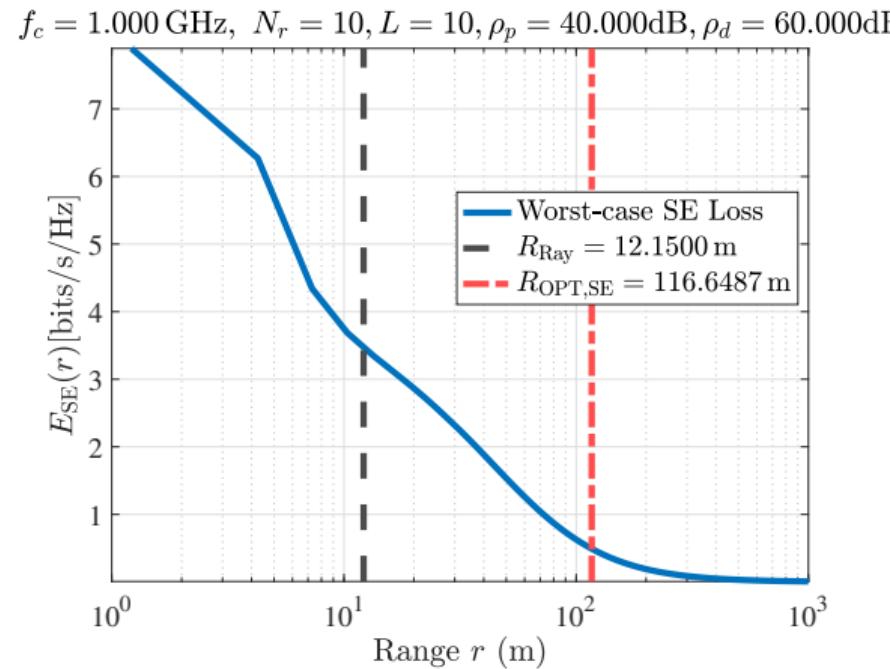
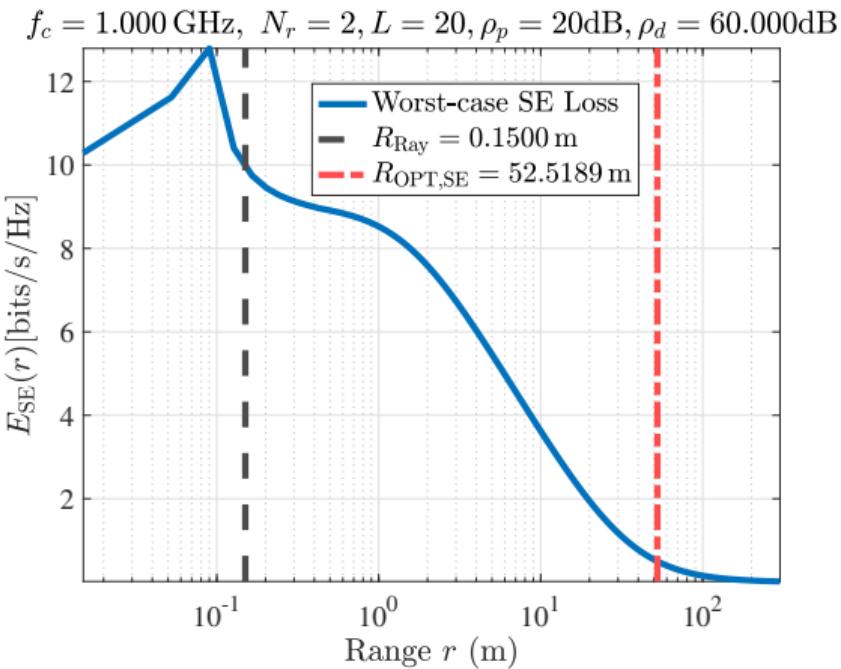
The tolerance error is $\delta_\infty = 0.001$ 1/m



- Rayleigh boundary severely underestimates NF region with element-wise metric.
- Optimal boundary up to 10-100×Rayleigh

Numerical Insights and Comparisons

Worst-case ℓ_2 Normalized Mismatch



The tolerance error is $\delta_{\ell_2} = 0.001$

Numerical Insights and Comparisons

SE Mismatch

The tolerance error is $\delta_{\text{SE}} = 0.5 \text{ bits/s/Hz}$

◎ Take-Home Messages

- Near-field = an opportunity, not a limitation
Depth, curvature, and power are intrinsic resources.

bias-free array
gain margin

NMSE floor
(LS/MMSE/CS/Super-res)

SE loss

- Plane-wave Rayleigh yardstick $\rightarrow 10\text{--}100 \times$ too optimistic at mmWave/sub-THz.

- Three metric-driven boundaries $\{E_{\ell_\infty}, E_{\ell_2}, E_{\text{SE}}\}$

- hardware safety
- signal-processing fidelity
- network throughput

- $\approx 1 \text{ cm}$ indoor positioning, depth-resolved MU-MIMO, and zero-overhead sensing are already inside every UL packet.

**Rethink your link budget:
embrace *depth-aware*
communications!**

Thank you!

Questions?

Contact: sajado@kth.se