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Introduction

Introduction

> Virtually all historically widely deployed commercial asymmetric cryptography will be
broken if sufficiently capable quantum computers are built in the future.

» |tis conceivable that such computers may be built sometime after the year 2030.

» Needless to say, it is very hard to make predictions about the future, but we
need to make a prediction to set the time plan for mitigation efforts.




When are mitigating actions required at the latest?

- The algorithm becomes operational.
The algorithm is projected to become susceptible to practical attacks. -

- Reliance on the algorithm for providing confidentiality must cease.
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All reliance on the algorithm must cease. -

Intermediary periods and confidentiality

» For plaintexts that we encrypt today to remain confidential for a period of A years,
the algorithm we rely upon must remain secure for a period of A years.

» Prioritize taking mitigating actions for algorithms that provide confidentiality.
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Symmetric keying
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1. Use symmetric keying, whenever feasible, with secure out-of-band key distribution.

» Limit the use contexts and validity periods of keys. Provides robust security, but no
forward secrecy (FS). Suitable baseline for closed high-security networks.




Asymmetric keying via public-key encryption
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2. Use post-quantum secure asymmetric keying, e.g. via public-key encryption.

> Less robust than symmetric keying but can provide forward secrecy (FS). Suitable
baseline for open networks when symmetric keying is not feasible.




Asymmetric keying via public-key encapsulation
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2. Use post-quantum secure asymmetric keying, e.g. via public-key encapsulation.

> Less robust than symmetric keying but can provide forward secrecy (FS). Suitable
baseline for open networks when symmetric keying is not feasible.




Hybrid keying

post-quantum secure — include at least one of these
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3. Hybridize keying methods, e.g. via key derivation or layered encryption, with the aim
of all methods having to be broken for the resulting hybrid method to be broken.

> At least one method must be post-quantum secure. Use symmetric keying as a
baseline whenever feasible. Hybridize with asymmetric keying for FS.

» Keep current classically secure methods to ensure security cannot be degraded.




Hybrid symmetric and asymmetric keying
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Further reading

>

Be conservative. Prioritize. Use
symmetric keying if feasible.

Key encapsulation options:
» FrodoKEM
> ML-KEM

Classic McEliece

> HQC

v

Signature options:
> SLH-DSA
> XMSS/LMS

> ML-DSA
>

Hybridize all non-hash-based
schemes. Avoid Level |-l for
non-hash-based schemes.
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Primary quantum algorithms for cryptanalysis

Shor’s algorithms

> [Shor94] solve both the integer factoring problem (IFP), and the discrete logarithm
problem (DLP) in finite cyclic groups, in polynomial time and space.

» Asymmetric cryptography based on either of these problems is vulnerable.

Grover’s algorithm

» [Grover96] provides a quadratic speedup for exhaustive search — in theory.

> |n practice, due to overheads, the slow speed of quantum computers, and poor
parallelization, it is not clear if [Grover96] provides a speedup. Easily mitigated.
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Cryptanalytical impact
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Our quantum cryptanalysis research

Fig.: Group operations per run for a 128-bit classical strength level
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> | have developed state-of-the-art quantum algorithms for breaking widely deployed
asymmetric cryptography and costed these to inform mitigation timelines.
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The quantum stack
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Full-stack cost estimates [GE21]
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integer arithmetic
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https://doi.org/10.22331/q-2021-04-15-433

Full-stack cost estimates [GE21]

expected time (h) and physical qubit count (Mab)
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These estimates are from [GE21], see the paper and abstract for etails on assumptions. Specifically, they are

for factoring RSA integers, for solving the DLP in Schnorr groups, and for solving the general and short DLP in

safe-prime groups, without making tradeoffs with respect to the number of runs required. The costs reported
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were obtained by optimizing the skewed volume, again see the paper for details. The classical strength level z is
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What does this mean for the timeline?
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What is the likelihood of quantumly breaking RSA-2048 in 24 hours?
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A key question in this survey [M. Mosca and M. Piani, Quantum Threat Timeline Report] was: “Please indicate how likely
you estimate it is that a quantum computer able to factorize a 2048-bit number in less than 24 hours will be built within the
indicated number of years. (For reference, you might want to take into account recent estimates for resources that might
be required for such a task, like the ones provided in [C. Gidney and M. Ekera, Quantum 5, 433 (2021)].)"
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Roadmap from IBM Quantum (2024)

Development Roadmap

2024 2025 2026 2027 2028 2029 2033+

P Improve quantum a prove g Beyond 2033, quantum-
quality and speed 10 execution speed and circuit quality 1o allow circuit quality 10 allow circut quality to allow circuit quality o allow centric supercomputers
aliow 5K gates with paralielization with 75K gates 10K gates. 15K gates 100M gates willinctude 1000's of
parametric circuits partitioning and logical qubits unlocking

quantum modularity the full power of

quantum computing

Data Rt
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5k gates 5k gates 7.5k gates 10k gates 15k gates 100M gates 18 gates
133 qubits 156 qubits 156 qubits 156 qubits 156 qubits 200 qubits 2000 qubits

Classical modular Quantum modular Quantum modular Quantum modular Quantum modular Error corrected Ervor corrected
133x3 = 399 qubits 156x7 = 1092 qubits 156x7 = 1092 qubits 156x7 = 1092 qubits 156x7 = 1092 qubits modularity modularity

Cropped roadmap adapted from the roadmap in the “IBM Quantum 2024 State of the Union” by J. Gambetta et al.
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Roadmap from Google Quantum Al (2022)
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Roadmap presented by H. Neven in his talk “Google Quantum Al update” at Quantum Summer Symposium 2022. The high-resolution image was retrieved
from the “Our quantum error correction milestone” article on the Google Quantum Al website. In a later revision, the 2025+ target for M3 was removed,

and logical qubit error rates specified: 10~ 2 for M2, 10—° for M3—M5, and 10~ for Mé. The original roadmap specified a 2029 target for M6.
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Selected recent algorithmic developments
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The papers by Regev, by Ragavan and Vaikuntanathan, by Ragavan, and by Chevignard, Fouque and Schrottenloher, are all CC-BY v4.0. The paper by Barbulescu,
Barcau and Pasol is CCO v1.0, i.e. public domain. The paper by Pilatte is included with the author’s permission.
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Summary and conclusion

Summary and conclusion

» Virtually all historically widely deployed commercial asymmetric cryptography will be
broken if sufficiently capable quantum computers are built in the future.

» |tis conceivable that such computers may be built sometime after the year 2030.

Mitigation advice for vulnerable asymmetric cryptography

» Prioritize taking mitigating actions with respect to providing confidentiality.

> |f feasible, use symmetric keying as a baseline, in combination with asymmetric
keying. Otherwise, use post-quantum secure asymmetric keying as a baseline.

> Be mindful of the timeframes. Early mitigation is an affordable insurance.
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