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Introduction

Introduction

▶ Virtually all historically widely deployed commercial asymmetric cryptography will be
broken if sufficiently capable quantum computers are built in the future.

▶ It is conceivable that such computers may be built sometime after the year 2030.

▶ Needless to say, it is very hard to make predictions about the future, but we
need to make a prediction to set the time plan for mitigation efforts.



When are mitigating actions required at the latest?

period of∆ years

t− ∆ t

time

The algorithm becomes operational.

The algorithm is projected to become susceptible to practical attacks.

Reliance on the algorithm for providing confidentialitymust cease.

All reliance on the algorithm must cease.

Intermediary periods and confidentiality

▶ For plaintexts that we encrypt today to remain confidential for a period of∆ years,
the algorithm we rely upon must remain secure for a period of∆ years.

▶ Prioritize taking mitigating actions for algorithms that provide confidentiality.
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Symmetric keying
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1. Use symmetric keying, whenever feasible, with secure out-of-band key distribution.

▶ Limit the use contexts and validity periods of keys. Provides robust security, but no
forward secrecy (FS). Suitable baseline for closed high-security networks.



Asymmetric keying via public-key encryption

encrypt decrypt

generate generate

encrypt decrypt

plaintext p
ciphertext

p

public key private keysymmetric key k

k

channels

public authenticated
private authenticated

2. Use post-quantum secure asymmetric keying, e.g. via public-key encryption.

▶ Less robust than symmetric keying but can provide forward secrecy (FS). Suitable
baseline for open networks when symmetric keying is not feasible.



Asymmetric keying via public-key encapsulation
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2. Use post-quantum secure asymmetric keying, e.g. via public-key encapsulation.

▶ Less robust than symmetric keying but can provide forward secrecy (FS). Suitable
baseline for open networks when symmetric keying is not feasible.



Hybrid keying
post-quantum secure — include at least one of these

classically secure
asymmetric keying

post-quantum secure
asymmetric keying symmetric keying

derive

keying material

3. Hybridize keying methods, e.g. via key derivation or layered encryption, with the aim
of all methods having to be broken for the resulting hybrid method to be broken.

▶ At least one method must be post-quantum secure. Use symmetric keying as a
baseline whenever feasible. Hybridize with asymmetric keying for FS.

▶ Keep current classically secure methods to ensure security cannot be degraded.



Hybrid symmetric and asymmetric keying
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Further reading
▶ Be conservative. Prioritize. Use

symmetric keying if feasible.

▶ Key encapsulation options:
▶ FrodoKEM
▶ ML-KEM
▶ Classic McEliece
▶ HQC
▶ · · ·

▶ Signature options:
▶ SLH-DSA
▶ XMSS/LMS
▶ ML-DSA
▶ · · ·

▶ Hybridize all non-hash-based
schemes. Avoid Level I–II for
non-hash-based schemes.

Chapter 4

Understanding and mitigating the quantum

threat to cryptography

In this chapter, we des
cribe the quantum

threat to cryptography, expla
in how it can

be mitigated, and how the results in this thesis may hopefully also be of construct
ive

use by informing projections for migration timelines and threat assessments.

4.1 Preliminaries

It is known that if a sufficiently large-scale fault-tolerant quantum computer can

be constructed, then virtually all historically widely deployed asymmetric crypto-

graphy — including but not limited to Rivest–Shamir–Adleman (RSA) [10], Diffie–

Hellman (DH) [11], DSA [105, 106], and their elliptic-curve
analogues EC-DH and

EC-DSA — will become susceptible to practical attacks.
This is a consequence

of Shor’s groundbreaking discovery [12, 13] in 1994 of quantum algorithms that

efficiently solve the integer factoring and discrete logarithm problems.

Symmetric cryptography will also be slightly impacted — mainly as a conse-

quence of Grover’s quantum algorithm [82,83] from 1996 that performs exhaustive

search — but contrary to Shor’s algorithm that runs in polynomial time, Grover’s

algorithm has an exponential runtim
e of O(2n/2) for n-bit keys, so the threat it

poses is easily mitigated by using sufficiently long keys. Furthermore, Grover’s

algorithm is optimal [107,108] for bla
ck-box exhaustive search.

For other examples of algorithms that claim speedups, but that do not have

polynomial runtime and that can hence be easily mitigated, see e.g. [80, 109–114].

4.2 When do vulnerable algorithms have to be replaced?

To understand when cryptographic algorithms have to be replaced, it is critical

to make a distinction between algorithms that are used to protect confidentiality,

such as algorithms for encryption, an
d algorithms that are used for other purposes,

such as algorithms for short-term authentication, or f
or issuing and verifying digital

signatures for non-
repudiation that need to remain binding over long time periods.
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Primary quantum algorithms for cryptanalysis

Shor’s algorithms

▶ [Shor94] solve both the integer factoring problem (IFP), and the discrete logarithm
problem (DLP) in finite cyclic groups, in polynomial time and space.

▶ Asymmetric cryptography based on either of these problems is vulnerable.

Grover’s algorithm

▶ [Grover96] provides a quadratic speedup for exhaustive search — in theory.

▶ In practice, due to overheads, the slow speed of quantum computers, and poor
parallelization, it is not clear if [Grover96] provides a speedup. Easily mitigated.

https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
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Our quantum cryptanalysis research
Fig.: Group operations per run for a 128-bit classical strength level
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▶ I have developed state-of-the-art quantum algorithms for breaking widely deployed
asymmetric cryptography and costed these to inform mitigation timelines.
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The quantum stack

physical qubits
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The quantum stack
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Full-stack cost estimates [GE21]
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Full-stack cost estimates [GE21]
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What does this mean for the timeline?

Respondents 2019–2024: Dorit Aharonov • Alexandre Blais • Ignacio Cirac • Bill Coish • David DiVincenzo • Martin Ekerå • Artur Ekert • Daniel Gottesman • Andrea Morello
Tracy Northup • Stephanie Simmons • Peter Shor • Frank Wilhelm-Mauch • Shengyu Zhang — Additional respondents 2024: Sergio Boixo • Earl Campbell

Andrew Childs • Joe Fitzsimons • Jay Gambetta • Yvonne Gao • Aram Harrow • Winfried Hensinger • Elham Kashefi • Yi-Kai Liu • Klaus Mølmer
William John Munro • Nicolas Menicucci • Kae Nemoto • Francesco Petruccione • Simone Severini • Gregor Weihs • David J. Wineland

https://globalriskinstitute.org/publications/quantum-threat-timeline/
https://globalriskinstitute.org/publications/quantum-threat-timeline-report-2020/
https://globalriskinstitute.org/publications/2021-quantum-threat-timeline-report/
https://globalriskinstitute.org/publications/2022-quantum-threat-timeline-report/
https://globalriskinstitute.org/publications/2023-quantum-threat-timeline-report/
https://globalriskinstitute.org/publication/2024-quantum-threat-timeline-report/


What is the likelihood of quantumly breaking RSA-2048 in 24 hours?

< 1%

“extremely unlikely”

< 5%

“very unlikely”

< 30%

“unlikely”

∼ 50%

“neither likely or unlikely”

> 70%

“likely”

> 95%

“very likely”

> 99%

“extremely likely”

5 years 18 5 6 2 1

10 years 4 11 7 5 3 2

15 years 1 3 7 10 6 4 1

20 years 1 2 10 8 7 4

30 years 1 3 12 10 6

A key question in this survey [M. Mosca and M. Piani, Quantum Threat Timeline Report] was: “Please indicate how likely
you estimate it is that a quantum computer able to factorize a 2048-bit number in less than 24 hourswill be built within the
indicated number of years. (For reference, you might want to take into account recent estimates for resources that might
be required for such a task, like the ones provided in [C. Gidney and M. Ekerå, Quantum 5, 433 (2021)].)”

2024

https://doi.org/10.22331/q-2021-04-15-433


Roadmap from IBM Quantum (2024)

Cropped roadmap adapted from the roadmap in the “IBM Quantum 2024 State of the Union” by J. Gambetta et al.

https://www.youtube.com/watch?v=4MpLnAo2974
https://www.youtube.com/watch?v=4MpLnAo2974


Roadmap from Google Quantum AI (2022)

Roadmap presented by H. Neven in his talk “Google Quantum AI update” at Quantum Summer Symposium 2022. The high-resolution image was retrieved
from the “Our quantum error correction milestone” article on the Google Quantum AI website. In a later revision, the 2025+ target for M3 was removed,
and logical qubit error rates specified: 10−2 for M2, 10−6 for M3–M5, and 10−13 for M6. The original roadmap specified a 2029 target for M6.

https://www.youtube.com/watch?v=a0CYcGp96VI&t=43s
https://www.youtube.com/watch?v=a0CYcGp96VI&t=43s
https://quantumai.google/qecmilestone


Selected recent algorithmic developments IACR Communications in CryptologyISSN 3006-5496, Vol. 2, No. 1, 36 pages. https://doi.org/10.62056/ayzojb0kr
Check for updates

A high-level comparison of state-of-the-artquantum algorithms for breaking asymmetriccryptography
Martin Ekerå1,2 and Joel Gärtner1,2

1 KTH Royal Institute of Technology, Stockholm, Sweden
2 Swedish NCSA, Swedish Armed Forces, Stockholm, Sweden

Abstract. We provide a high-level cost comparison between Regev’s quantum

algorithm with Ekerå–Gärtner’s extensions on the one hand, and existing state-of-

the-art quantum algorithms for factoring and computing discrete logarithms on the

other. This when targeting cryptographically relevant problem instances, and when

accounting for the space-saving optimizations of Ragavan and Vaikuntanathan that

apply to Regev’s algorithm, and optimizations such as windowing that apply to the

existing algorithms. Our conclusion is that Regev’s algorithm without the space-

saving optimizations may achieve a per-run advantage, but not an overall advantage,

if non-computational quantum memory is cheap. Regev’s algorithm with the space-

saving optimizations does not achieve an advantage, since it uses more computational

memory, whilst also performing more work, per run and overall, compared to the

existing state-of-the-art algorithms. As such, further optimizations are required for it

to achieve an advantage for cryptographically relevant problem instances.
Keywords: Regev’s algorithm · Cost estimates · Factoring · Discrete logarithms1 Introduction

In August of 2023, Regev [Reg25]1 introduced a quantum factoring algorithm that may be

perceived as a d-dimensional variation of Shor’s factoring algorithm [Sho94,Sho97].

To factor an n-bit integer N , Regev raises the squares of the first d = ⌈√
n ⌉ primes to

short exponents. By using binary tree-based arithmetic, and square-and-multiply–based

exponentiation, Regev achieves a circuit size reduction by a factor Θ̃(√
n) compared to

the other state-of-the-art variations of Shor’s algorithms that are in the literature. This

reduction comes at the expense of having to perform d + 4 runs, however, and at the

expense of using O(n3/2) qubits of space in each run. Regev’s algorithm furthermore relies

on a heuristic number-theoretic assumption.In October of 2023, Ragavan and Vaikuntanathan [RV23] reduced the space requirements

to Õ(n) qubits by using Fibonacci-based exponentiation. A few months later, in February

of 2024, Ragavan and Vaikuntanathan [RV24]2 improved the constants in their analysis

and assigned a new title to their pre-print. More recently, in April and May of 2024,

Ragavan [Rag24] introduced further optimizations, and generalized the Fibonacci-based

exponentiation so as to allow for tradeoffs between the circuit size and the space usage.

In November of 2023, Ekerå and Gärtner [EG24b]3 extended Regev’s factoring algo-

rithm to algorithms for computing discrete logarithms and orders quantumly in groups for
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1For the initial pre-print version of [Reg25], see ArXiv 2308.06572v1.
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Summary and conclusion

▶ Virtually all historically widely deployed commercial asymmetric cryptography will be
broken if sufficiently capable quantum computers are built in the future.

▶ It is conceivable that such computers may be built sometime after the year 2030.

Mitigation advice for vulnerable asymmetric cryptography

▶ Prioritize taking mitigating actions with respect to providing confidentiality.
▶ If feasible, use symmetric keying as a baseline, in combination with asymmetric
keying. Otherwise, use post-quantum secure asymmetric keying as a baseline.

▶ Be mindful of the timeframes. Early mitigation is an affordable insurance.
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