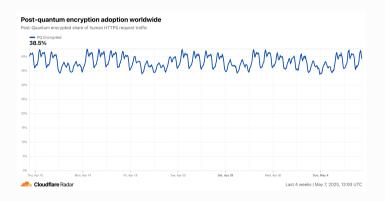


Protection against quantum computers through lattice problems

Joel Gärtner
May 22, 2025 — KTH Royal Institute of Technology

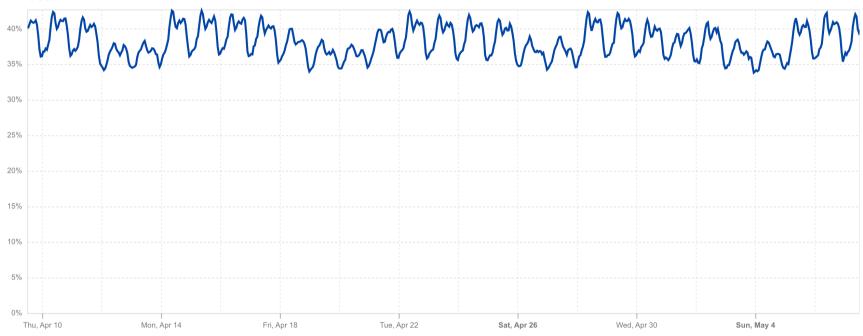
Post-Quantum Cryptography (PQC)

- Protection against the threat of quantum computers
- Cryptosystems that serve as drop-in replacements for classical cryptography that is used today
- Security based on the assumed hardness of problems which seem hard to solve even with access to a quantum computer

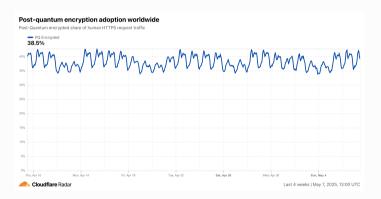


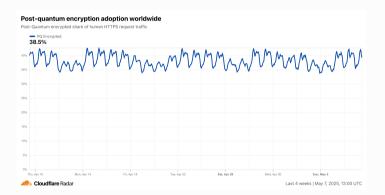
NIST PQC standards

- Standards developed by the NIST first available in 2024
- Result of a multi-year standardization process
- Still ongoing process to standardize additional signature schemes

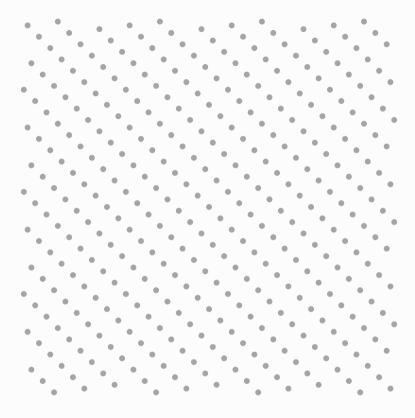

- There is already a significant amount of traffic protected by PQC
- Combining well-tested quantum vulnerable cryptography with newer less mature PQC

Post-quantum encryption adoption worldwide

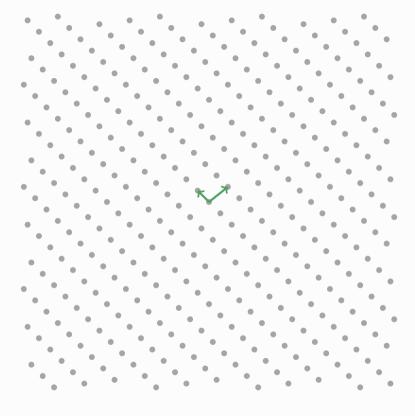

Post-Quantum encrypted share of human HTTPS request traffic


PQC Adoption

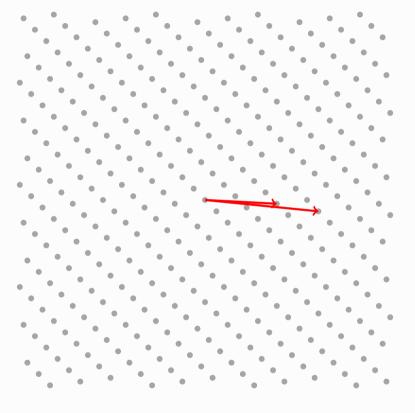
- There is already a significant amount of traffic protected by PQC
- Combining well-tested quantum vulnerable cryptography with newer less mature PQC
- Protection for confidentiality implemented, but no large scale support for authenticity


PQC Adoption

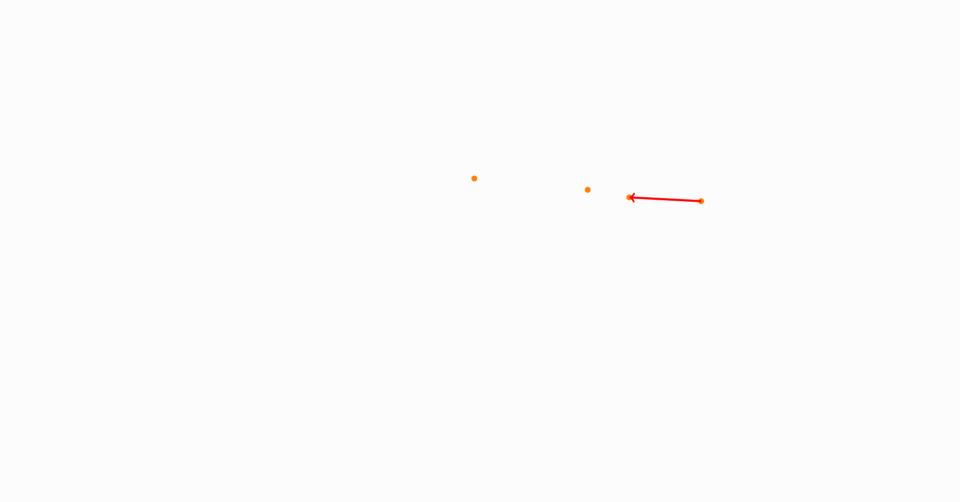
- There is already a significant amount of traffic protected by PQC
- Combining well-tested quantum vulnerable cryptography with newer less mature PQC
- Protection for confidentiality implemented, but no large scale support for authenticity
- Lattice-based scheme used for PQC



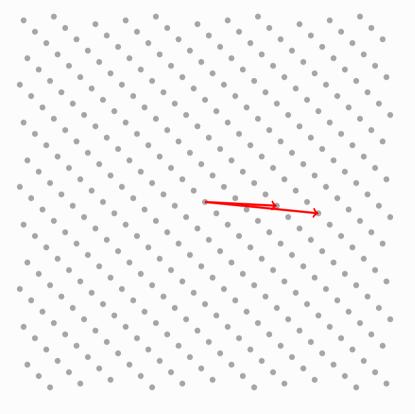
• Regular *n*-dimensional pattern

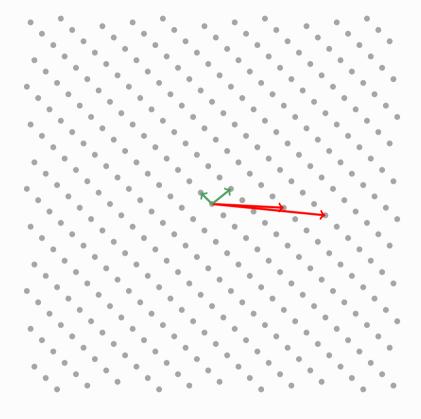


- Regular *n*-dimensional pattern
- Generated by a non-unique basis



- Regular *n*-dimensional pattern
- Generated by a non-unique basis





- Regular *n*-dimensional pattern
- Generated by a non-unique basis

- Regular *n*-dimensional pattern
- Generated by a non-unique basis
- A good basis makes solving lattice problems easier than with a bad basis

Learning With Errors (LWE) problem

- Primary problem used for lattice-based cryptography
- Corresponds to finding a lattice point close to a target point
- Strong theoretical arguments for its asymptotic hardness
- Plenty of analysis of concrete hardness of problem
- My work analyzed gap between concrete and theoretical hardness

Key-Encapsulation Mechanisms (KEM)

- Method to establish a shared key between Alice and Bob
- Bob's public key pk is available for everyone
- Alice makes use of pk to encapsulate a random secret key K into a ciphertext c
- Given c, Bob can use his private key to recover K
- The eavesdropper Eve is unable to recover K when given c and pk

PQC KEM Algorithms

- CRYSTALS-Kyber and HQC two algorithms chosen to be standardized by NIST
- The standard ML-KEM (FIPS 203) based on CRYSTALS-Kyber is already available
- HQC was recently chosen as an additional algorithm to standardize

- Built on module version of LWE problem
- Currently used as hybrid solution with classical ECDH

	ML-KEM	ECDH
Public Key	1184	32
Ciphertext	1080	32

Table: Public key and ciphertext sizes in bytes.

FIPS 203

Federal Information Processing Standards Publication

Module-Lattice-Based Key-Encapsulation Mechanism Standard

Category: Computer Security

Subcategory: Cryptography

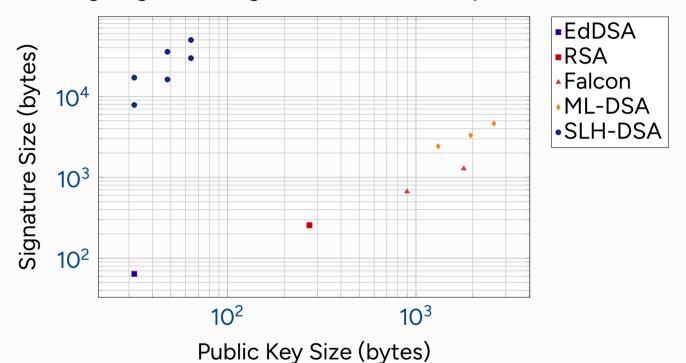
Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8900

This publication is available free of charge from: https://doi.org/10.6028/NIST.FIPS.203

Published August 13, 2024

Digital Signature Algorithms

- Method for Alice to securely sign a message M
- Alice's public key pk is available to everyone
- Signature Sig for message M produced by Alice
- Anyone with access to pk and Sig is able to verify that Alice signed M



PQC algorithms for digital signatures

- RSA and EdDSA quantum vulnerable signature schemes used today
- ML-DSA and SLH-DSA already standardized by NIST
- Falcon an additional signature scheme that is in the process of being standardized

Joel Gärtner KTH 15/23

Log-Log Plot of Signature Scheme Compactness

- Built on module version of LWE problem
- Primary signature algorithm standardized by NIST

FIPS 204

Federal Information Processing Standards Publication

Module-Lattice-Based Digital Signature Standard

Category: Computer Security

Subcategory: Cryptography

Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8900

This publication is available free of charge from: https://doi.org/10.6028/NIST.FIPS.204

Published August 13, 2024

Much larger signatures than for currently used digital signature schemes

Small public keys and conservative security assumption

FIPS 205

Federal Information Processing Standards Publication

Stateless Hash-Based Digital Signature Standard

Category: Computer Security

Subcategory: Cryptography

Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8900

This publication is available free of charge from: https://doi.org/10.6028/NIST.FIPS.205

Published: August 13, 2024

- Alternative problem used for lattice-based cryptography
- Corresponds to finding a dense sublattice

- Digital signature scheme based upon the NTRU problem
- More compact than the other lattice-based signature scheme ML-DSA
- Much more complex to implement in a secure manner
- Unsuitable for some applications

Security	\sim 128 bits	\sim 192 bits	\sim 256 bits
Falcon	(897, 666)	-	(1793, 1280)
ML-DSA	(1312, 2420)	(1952, 3309)	(2592, 4627)

Table: (Public key size, Signature size) in bytes.

- Combination of NTRU and LWE problems introduced in my thesis
- NTWE-based schemes with benefits over LWE and NTRU-based schemes

More compact signature scheme

- New method to produce signatures developed
- Same basic idea as for ML-DSA but with compactness similar to Falcon

Scheme	Security Level	VK Size	Signature Size	Total
Falcon-512	120	897	666	1563
Our scheme	120	928	775	1703
ML-DSA-44	123	1312	2420	3732
Falcon-1024	273	1793	1280	3073
Our Scheme	257	1568	1694	3262
ML-DSA-87	252	2592	4595	7187

