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1. Select Design > Format 
Background.

2. In the Format Background 
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texture fill.

3. Select File.

4. In the Insert Picture dialog 
box, choose the picture you 
want to use and then select 
Insert.
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The role of the Swedish Research Council

• We provide funding for researcher-
initiated basic research 

• We initiate and support strategic 
initiatives in research

• We work for an efficient research 
system 

• We work to ensure that researchers 
gain access to advanced research 
infrastructure

• We analyse the conditions for 
research, evaluate research, and give 
the Government advice on future 
research policy

• We coordinate and develop 
communication about the 
significance, results, and conditions of 
research 

• We promote international 
collaborative research
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A well-functioning digital future for Swedish research requires:

Computing resources and AI capabilities

E.g. NAISS and AI Factories

Secure and fast data transfer 

Sunet provides fast network and trusted 
identification services

High-quality user support

E.g. NAISS and ENCCS provide resources to 
Swedish users of HPC and AI applications

Data from research and research 
infrastructures

E.g. MAX IV, SciLifeLab, ESS as well as 
coordinating infrastructures such as RUT, 

SND and ICOS-Carbon Portal



Monica Billger, Professor and 
Director of InfraVis



National Research 

Infrastructure 

for Data Visualization

Scientific Discovery 
Through Visualization Support

Researchers​ in Sweden​ can get help​ in analyzing and 
visualizing​ data – Apply at https://infravis.se



Visualiseringar som exempel för illustration

”Enables scientific discovery through data analysis and visualization 
support”



“Transforms complexity into clarity.  Making sense of data – powering 
discovery”

• Cross-disciplinary research creates data complexity – calls for 
visualization to enhance exploration and communication 

• Bridging between data and  insights enabled by AI and human interplay

• Maximise scientific impact from cross-infrastructure collaborations

InsightsData
processing

Human
interaction

AI & visualization AI & visualization

Addressing Societal Challenges and Sustainability Goals



Hanifeh Khayyeri, Vice President of 
Computer Science, RISE



Expanding Frontiers

Resilience in a 

Changing Climate

Transforming Industry

We put Research 

to Action.

We work with 

groundbreaking 

technologies.

Driving Science 

& Innovation

Advancing industry, education, 

healthcare, and everyday life.

From ocean depths to orbit—

and straight to your fingertips. Shaping future

society



Space Mission Data and 
Plasma Physics with High 
Performance Computing
Christer Fuglesang, Professor and Director of KTH Space Center
Tomas Karlsson, Professor Space Plamsma Physics

Svetlana Ratynskaia, Professor in Plasma Physics

Stefano Markidis, Professor of High Performance Computing



Christer Fuglesang, Professor and 
Director of KTH Space Center



Astrophysics
EO Big Data for 

Wildfire Monitoring

Human behaviour

460 °C SiC technology 

for in-situ on Venus

Expandable structure: CubeSat-boom

EM-fields ín the magnetosphere

KTH Space Center – many research activities

Rocket engines
Space robots

GHG measurements

Sunshades in space moderating 

global temperature rise



Tomas Karlsson, Professor Space 
Plasma Physics



Space Missions and Measurements

BepiColombo (ESA - JAXA)

Juice (ESA)

Multiscale Magnetospheric Mission (NASA)

Big players:

Europa – ESA
Japan – JAXA
USA – NASA
KTH contributes!

But also small national 
missions: e.g. SPIDER-2



Goal:

Understanding how space 
environment around Earth 
and other planets form and 
affect the planets

How we do it:

• Direct measurements by suite of 
plasma instruments 

• Comparison to theory and 
simulations



Svetlana Ratynskaia, Professor in 
Plasma Physics



Fusion energy: Bringing the Stars to Earth

R ~ 6 mh ~ 29 m

➢ ITER will maintain burning fusion plasmas for long duration
➢ It will test the integrated technologies, materials, and physics regimes 

necessary for the commercial production of fusion-based electricity

The ITER 
machine

Validation of the complete 

system can be performed 

only when the plant is built 

while

EU (FP10) ambitious timeline of 

‘Fusion on the grid’ by 2034  

For large leaps forward:

Physics-based models, numerical 

simulations & digital twins

+

Model validations in today’s 

machines

+

Materials testing & development



Stefano Markidis, Professor of High 
Performance Computing



• Plasma-PEPSC, a European Center of Excellence for Plasma Simulations
• Enabling simulation on Exascale Supercomputers for space weather 

TOP#1
plasma simulations 
at Exascale



• ASAP = Automatics 
in Space Exploration. 

• EU Project

• Enabling AI 
technologies in space

• On-spacecraft data 
analysis

• Control
• Mission planning



AI for Scientific Discovery 
and Engineering and Society 
from 6G to Genetic AI
Alexandre Proutiere, Professor and Leader of the KTH Center for AI
Cicek Cavdar, Associate Professor in Wireless Communication

Paris Carbone, Associate Professor in Software and Computer 
Science
Thomas Winkler, Associate Professor in Micro and Nanosystems
Hedvig Kjellström, Professor in Computer Vision



Alexandre Proutiere, Professor and 
Leader of the KTH Center for AI 



KTH Center for AI (A KTH strategic initiative)

Get AI research at KTH more visible, organized, and collaborative to shape 
the next AI wave: an inter-disciplinary effort

Foundations of AI
AI for scientific discovery
AI for engineering and society

In 2025:
ELLIS application 
Consolidate partnerships
VR/Vinnova excellence clusters



AI Reasoning 

Get AI models to match and surpasses top human performance in  rigorous intellectual 
tasks
GPT5 (OpenAI) = LLM+CoT

IMO gold medal 2025 (OpenAI, Gemini) = LLM + verification + RL

Prog. language

RL

Th. prover



Cicek Cavdar, Associate 
Professor in Wireless 
Communication



Goal: 

Robust and 
Sustainable Seamless 
Connectivity via 
Integrated TN and 
NTN with Sensing, 
Localization and 
Computing

AI Native 6G Communication Systems

for Sustainable, Mobile, Autonomous and ResilienT 6G Satellite Communications

Sustainable, Mobile, Autonomous and ResilienT
6G Satellite Communications (SMART 6GSAT)

2025-2031, 60MSEK
21 partners from telco 
and space industry

AI for Scientific Discovery and Engineering and Society from 6G to Genetic AI



AI for Green Mobile Networks

Artificial Intelligence & Machine Learning

➢AI4Green enables traffic-adaptive green 
mobile network solutions

How:
➢ Analyse the data from different resources

➢ Predict the future traffic, user behavior  and 
services trends, 

➢ Detect anomalies
➢ Train ML algorithms with data
➢Learn decision impact over time 
➢ Autonomously take decisions on energy 

saving functions

➢Today’s cellular networks are not made for 
adaptive and autonomous management, 
they are static. Energy saving will be limited 
if we inject some ML in today’s BSs. 

➢Study advanced technologies and 
architectures



Paris Carbone, Associate 
Professor in Software and 
Computer Science



AI for Scientific Discovery
key innovations and their applications

a systems frontier

Automated Theorem 
Provers (ATPs)

Neurosymbolic 
LLM-Integration

+RL

Scientific Assistants & 
Code Generators

Agentic/ 
Compound AI

Predictive Multimodal 
Reasoning & Integration

Foundational 
Relational/Graph 

Models

Edge AI (6G, avionics, 
satellites etc.)

Advanced 
Model 

Quantization

Paris Carbone - Data Systems Lab



Thomas Winkler, Associate Professor 
in Micro and Nanosystems



IMPreT: In vitro Models for Precision Therapies 

Anna Herland (CBH)

Björn Önfelt (SCI) Thomas Winkler (EECS)

Cecilia Williams (CBH)

My Hedhammar (CBH)

Tuuli Lappalainen (CBH)

Fredrik Edfors (CBH)

Joakim Lundeberg (CBH)

Joakim Jaldén (EECS)

Coordinator:
Inês Pinto (CBH)

• Leverage complementary expertise 
from KTH EECS, CBH, and SCI along 
with our national infrastructure 
MyFab, NMI, NGI, NAISS/PDC, …

• Establish KTH as a national hub for 
next-generation precision medicine, 
integrating engineering, life 
sciences, and AI into human-
relevant in vitro models

• Develop a sustainable, scalable
platform for personalized medicine
in Sweden

• Network expansion through 
academic, clinical and industrial 
collaborations 



Intelligent In Vitro Models



Hedvig Kjellström, Professor 
Computer Vision



Strategic research initiative at KTH: 
GAIN – Generative AI for Next-Generation Science
https://www.kth.se/en/forskning/sarskilda-forskningssatsningar/strategiska-initiativ/kth-gain 

The GAIN platform aims to build on KTH’s strengths in scientific computing to establish broad 
leadership in applying generative AI methods in high-performance computing environments. 
Our particular focus is achieving impact in high-profile scientific and societal challenges.

• Modeling scientific processes with generative AI methods
• Hot topic, e.g., Nobel Prize in Chemistry 2024 in this area

• KTH SCI and EECS schools

• Applications in climate, chemistry, materials, fluid mechanics, medicine, etc

• Leverage and develop high-performance computing resources 
• PDC, NAISS, EuroHPC, Lumi etc

• Leverage and develop national and international collab 
• SciLifeLab, Riken, LiU, WASP AI4Science etc
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Cyber Security and Privacy 
and Safety Critical Systems
Mathias Ekstedt, Professor in Software Systems Architecture and 
Security
Cyrille Artho, Associate Professor in Software Engineering
Tobias Oechtering, Professor in Information Science and 
Engineering

Henrik Sandberg Professor in Decision and Control Systems
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Security



Cybersecurity at KTH
• Multidisciplinary subject (according to ACM cybersecurity curriculum) 

• Technical security
• Data security, Software security, Component security, Connection security, System security

• Human security (usable security, awareness, deception, …)
• Organisational security (Risk management, governance, culture, continuity planning, etc..
• Societal security (policy, law, ethics, ..)

• KTH (mainly) works with parts of Technical security
• Privacy, crypto, programming language security, software composition security, hardware security, communication network 

security, enterprise systems security, cyber-physical security, AI/ML security
• Mainly at EECS, but also ITM

• COS, NSE, SCS, TCS, DCS, ISE, ESY, MID

• Centers, etc.
• Center for Cyber Defense and Information Security (CDIS)

• 15 projects listed

• Digital Futures 
• Trust group, several projects

• WASP
• Several projects 

• Cybersecurity and Privacy (CySeP) Summer School
• Cybercampus



Cyber attack simulations for cyber defense

Defense
actions

Malicious 
actions

Attack graphAsset graph

Digital cyber twin

DefenderAttacker

game 1

game 2

game n

ICT Infrastructure

Modeling

Training



Cyrille Artho, Professor in Software 
Engineering



How to trust untrusted code?

Preconditions

Implementation (body)

Postconditions

Ensuredata is valid

Ensureoutput is valid

Minimal restrictions (sandbox)



How to handle software upgrades with untrusted code

Preconditions

Implementation (body)

Postconditions

1. Modern platforms enforce checks:
○ M. Birgersson, M. Balliu: TEEs

○ M. Eshghie: Smart contracts

2. Modern tools offer graphical models:
○ M. Esghie: DCR graphs

○ P.Kamboj, R. Guanciale: Petri nets



Tobias Oechtering, Professor in 
Information Science and Engineering



Privacy – A challenge in a data-driven society!

• Personal data is freely shared and collected
• Data brokers create and sell profiles
• Once compromised, it cannot be restored

• Individuals act irrationally 
• Short term benefit against long-term harm 

(hyperbolic discounting)

• Advances in ML increase the privacy risk
• Data can be stored – adversary can wait

• Legal requirement (GDPR)
• Human right – high fines!
• Uncertainity what is adequate and 

conservative approaches slow down 
technological development

• Need a “lagom” implementation! 

WHY?
• Privacy is an abstract concept – guarantees 

require a mathmatical proof!

• Operationally meaningful risk assessment

• Novel privacy measure Pointwise Maximal 
Leakage fixes problems of differential 
privacy 

HOW?

as a result, obtain a strict type of guarantee. Less stringently,

we can define guarantees that require small privacy leakage

with high probability, or on average 1 that, naturally, would

enable more utility. These privacy guarantees are defined in

Section III where we also discuss some of their elementary

properties.

In Section IV, we study how pointwise maximal leakage

relates to several relevant privacy/statistical notions, namely,

max-information [22], local differential privacy [13], local

information privacy [12], local differential identifiability [7],

and mutual information. When possible, we derive bounds

between the different notions and discuss their implications.

As a final note, in Section II-D we discuss a privacy frame-

work called thedynamic consumption of secrecy [18] which, in

the same spirit as our work, attempts to quantify the privacy

leakage due to disclosing a single outcome of the random

variable Y . However, [18] argues that the privacy definition

resulting from this dynamic view suffers from limitations that

convince the authors against pursuing this line of research.

In Section II-D, we discuss what these limitations are, and

explain why they do not apply to pointwise maximal leakage.

B. Notation

In this work, we restrict our attention to finite random

variables, therefore, all sets are assumed to be finite. We use

uppercase letters to refer to random variables, e.g., X . Sets are

represented by uppercase calligraphic letters, for example, the

alphabet of X will be denoted by X . Let E ✓ X . We will use

both PX (E) and PX ⇠PX [E] to describe the probability of an

event E according to distribution PX . Similarly, we will use

EX ⇠PX [·] to represent expectation with respect to PX . The

notation supp(PX ) := { x 2 X : PX (x) > 0} will be used to

refer to the support set of distribution PX . Given probability

distributions PX and QX over a set X , we write PX ⌧ QX
to imply that PX is absolutely continuous with respect to QX .

Finally, we use log(·) to denote the natural logarithm and 1[·]

to denote the indicator function.

I I . DEFINITION, INTERPRETATIONS AND PROPERTIES

A. Randomized Function View of Leakage

We begin by describing our threat model, which is based

on the threat model of [21]. Suppose X is a random variable

defined over a finite alphabet X . We will use X to represent

some data containing sensitive information. Further, suppose

Y is a random variable taking values in a finite alphabet

Y which is the output of a channel (i.e., kernel) PY |X
with input X . We will also refer to the channel PY |X as a

privacy mechanism. Consider an adversary who is interested in

guessing the realized value of a possibly randomized function

of X , called U, characterized by PU |X . The adversary, who is

computationally unbounded, observes an outcome Y = y and

constructs aguessof U called Û according to akernel PÛ |Y = y .

The adversary is passive in the sense that she cannot affect the

1By considering the average-case privacy leakage, we retrieve the original
definition of maximal leakage.

Fig. 1. System model for the randomized function view of leakage: An
adversary observes an outcome y of the channel PY |X , and tries to guess the
value of a randomized function of X , denoted by U .

outcomes of the system, but can verify if her guess is correct.

Furthermore, the adversary knows the joint distribution PUX Y ,

and therefore, can optimize her choice of guessing kernel

PÛ |Y = y to maximize her chances of correctly guessing U.

To measure the privacy leakage of a disclosed outcome y,

the system designer considers the ratio of the probability of

correctly guessing U having observed y, and the probability

of correctly guessing U with no observations. Thus, we define

the pointwise U-leakage of X as follows:

`U (X ! y) := log
supP

Û | Y = y
P

h
U = Û | Y = y

i

maxu2 U PU (u)
, (2)

whereU denotes the alphabet of the random variableU. As the

system designer may not know what U the adversary is inter-

ested in, or different adversaries may be interested in guessing

different U ’s, we investigate the worst-case scenario by taking

the supremum of (2) over all possible U ’s. Considering this

setup, we define pointwise maximal leakage (PML) denoted

by `(X ! y) as follows.

Definition 1 (Pointwise maximal leakage): Let PX Y denote

the joint distribution over X and Y , and suppose the Markov

chain U − X − Y − Û holds. The pointwise maximal leakage

from X to Y = y, `(X ! y), is defined as

`(X ! y) := sup
PU | X

`U (X ! y)

= log sup
PU | X

supP
Û | Y = y

P
h
U = Û | Y = y

i

maxu2 U PU (u)
.

(3)

In the following result, we show that `(X ! y) can be written

as a simple expression.

Theorem 2: Given a joint distribution PX Y over finite

alphabets X and Y , the pointwise maximal leakage from X

to Y = y is given by

`(X ! y) = log max
x2 supp(PX )

PX |Y = y (x)

PX (x)
. (4)

Proof: Fix an arbitrary random variableU. Thenumerator

Information-theoretic Privacy Measure:

Pointwise Maximal Leakage ● Breakthrough result since Quantitative 

Information Flow literature claimed that a 

pointwise measure is impossible

– [ISIT’22, IEEE T-IT’23]

● Operationally meaningful measure

– General alphabets [ISIT’23]

– Extr. mechanism design [T-IFS’24]

– Rethinking Privacy Impossibility [review]

– Inform. Density Bounds for Privacy [review]

● Novel concept raises interest

– Scientifically from key privacy researchers form 
IT domain as well as CS domain, e.g. C. 
Palamidessi, D. Kifer, K. Nissim, M. Gaboardi

– New projects/cooperations: VR, SEB, Region,…

● Annual Privacy Forum 24 (EU data protection officer) 

– Paper that shows that differential privacy is 
meaningless if one considers correlated data
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outcomes of the system, but can verify if her guess is correct.

Furthermore, theadversary knows the joint distributionPUX Y ,

and therefore, can optimize her choice of guessing kernel

PÛ |Y = y to maximize her chances of correctly guessing U.

To measure the privacy leakage of a disclosed outcome y,

the system designer considers the ratio of the probability of

correctly guessing U having observed y, and the probability

of correctly guessing U with no observations. Thus, we define

the pointwise U-leakage of X as follows:
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whereU denotes thealphabet of the random variableU. As the

system designer may not know what U the adversary is inter-

ested in, or different adversaries may be interested in guessing

different U ’s, we investigate the worst-case scenario by taking

the supremum of (2) over all possible U ’s. Considering this

setup, we define pointwise maximal leakage (PML) denoted

by `(X ! y) as follows.

Definition 1 (Pointwise maximal leakage): Let PX Y denote

the joint distribution over X and Y , and suppose the Markov

chain U − X − Y − Û holds. The pointwise maximal leakage

from X to Y = y, `(X ! y), is defined as
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In the following result, we show that `(X ! y) can be written

as a simple expression.

Theorem 2: Given a joint distribution PX Y over finite

alphabets X and Y, the pointwise maximal leakage from X
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outcomes of the system, but can verify if her guess is correct.

Furthermore, theadversary knows the joint distributionPUX Y ,

and therefore, can optimize her choice of guessing kernel

PÛ |Y = y to maximize her chances of correctly guessing U.

To measure the privacy leakage of a disclosed outcome y,

the system designer considers the ratio of the probability of

correctly guessing U having observed y, and the probability

of correctly guessing U with no observations. Thus, we define

the pointwise U-leakage of X as follows:

`U (X ! y) := log
supP

Û | Y = y
P
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U = Û | Y = y
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maxu2 U PU (u)
, (2)

whereU denotes thealphabet of the random variableU. As the

system designer may not know what U the adversary is inter-

ested in, or different adversaries may be interested in guessing

different U’s, we investigate the worst-case scenario by taking

the supremum of (2) over all possible U ’s. Considering this

setup, we define pointwise maximal leakage (PML) denoted

by `(X ! y) as follows.

Definition 1 (Pointwise maximal leakage): Let PX Y denote

the joint distribution over X and Y , and suppose the Markov

chain U − X − Y − Û holds. The pointwise maximal leakage

from X to Y = y, `(X ! y), is defined as

`(X ! y) := sup
PU | X

`U (X ! y)

= log sup
PU | X

supP
Û | Y = y

P
h
U = Û | Y = y

i

maxu2 U PU (u)
.

(3)

In the following result, we show that `(X ! y) can be written

as a simple expression.

Theorem 2: Given a joint distribution PX Y over finite

alphabets X and Y , the pointwise maximal leakage from X

to Y = y is given by

`(X ! y) = log max
x2 supp(PX )

PX |Y = y (x)

PX (x)
. (4)

Proof: Fix an arbitrary random variableU. Thenumerator
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DYNACON – DYNamic Attack detection and 
mitigation for seCure autONomy

Principal Investigators
• Henrik Sandberg (KTH Decision and Control Systems)
• György Dán (KTH Network and Systems Engineering)
• Andrei Gurtov (LiTH Computer and Information Science)
• Martina Maggio (LTH Automatic Control)

Postdoc
• Rijad Alisic (KTH Decision and Control Systems)

PhD students
• Axel Andersson (KTH Network and Systems Engineering)
• Talitha Nauta (LTH Automatic Control) [until Jan. 2025]
• Jacopo Porzio (KTH Decision and Control Systems)
• Zelong Wang (LiTH Computer and Information Science)
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Secure Autonomy Challenges

“…cyber-physical security (control systems, real-
time systems, communication, and network 
security)”

“…injection of false data and manipulation of 
timestamps in time-critical control loops.“

“…adaptively enabling the use of trusted 
embedded devices and (limited) cryptographic 
authentication when necessary. Furthermore, 
distributed anomaly detection and state observer 
schemes…”

“As a use case, we consider swarms of unmanned 
aerial vehicles (drones). A particularly relevant 
scenario is that of “identity theft”, where malicious 
identity signals are exploited by attackers to 
deceive the control system operators.” 49



Testbeds

[Nauta, Sandberg, and Maggio, “Stealthy Computational Delay 
Attacks on Control Systems,” ICCPS’25, 
https://dl.acm.org/doi/10.1145/3716550.3722013]

[Larsson-Kapp, Kniivilä, Wang, Wzorek, Lemetti, and Gurtov, “Trust-
Based Collision Avoidance for Unmanned Aircraft Systems,” 
INCAS’24, [https://doi.org/10.1109/INCAS63820.2024.10798560]

50

https://dl.acm.org/doi/10.1145/3716550.3722013
https://doi.org/10.1109/INCAS63820.2024.10798560

	Slide 1: EECS Research & Impact Day 2025
	Slide 2: Outlook on Research and Science with  Digital Futures
	Slide 3: Director General Katarina Bjelke, Swedish Research Council
	Slide 4: The Swedish Research council
	Slide 5: The role of the Swedish Research Council
	Slide 6: A well-functioning digital future for Swedish research requires:
	Slide 7: Monica Billger, Professor and Director of InfraVis
	Slide 8
	Slide 9: Visualiseringar som exempel för illustration
	Slide 10
	Slide 11: Hanifeh Khayyeri, Vice President of Computer Science, RISE
	Slide 12
	Slide 13: Space Mission Data and Plasma Physics with High Performance Computing
	Slide 14: Christer Fuglesang, Professor and Director of KTH Space Center
	Slide 15: KTH Space Center – many research activities
	Slide 16: Tomas Karlsson, Professor Space Plasma Physics
	Slide 17
	Slide 18
	Slide 19: Svetlana Ratynskaia, Professor in Plasma Physics
	Slide 20: Fusion energy: Bringing the Stars to Earth
	Slide 21: Stefano Markidis, Professor of High Performance Computing
	Slide 22
	Slide 23
	Slide 24: AI for Scientific Discovery and Engineering and Society from 6G to Genetic AI
	Slide 25: Alexandre Proutiere, Professor and Leader of the KTH Center for AI 
	Slide 26: KTH Center for AI (A KTH strategic initiative)
	Slide 27: AI Reasoning 
	Slide 28: Cicek Cavdar, Associate Professor in Wireless Communication
	Slide 29
	Slide 30: AI for Green Mobile Networks
	Slide 31: Paris Carbone, Associate Professor in Software and Computer Science
	Slide 32: AI for Scientific Discovery key innovations and their applications
	Slide 33: Thomas Winkler, Associate Professor in Micro and Nanosystems  
	Slide 34: IMPreT: In vitro Models for Precision Therapies 
	Slide 35: Intelligent In Vitro Models
	Slide 36: Hedvig Kjellström, Professor Computer Vision
	Slide 37: Strategic research initiative at KTH:  GAIN – Generative AI for Next-Generation Science
	Slide 38: Cyber Security and Privacy and Safety Critical Systems
	Slide 39: Mathias Ekstedt, Professor in Software Systems Architecture and Security
	Slide 40: Cybersecurity at KTH
	Slide 41: Cyber attack simulations for cyber defense
	Slide 42: Cyrille Artho, Professor in Software Engineering
	Slide 43: How to trust untrusted code?
	Slide 44: How to handle software upgrades with untrusted code
	Slide 45: Tobias Oechtering, Professor in Information Science and Engineering
	Slide 46: Privacy – A challenge in a data-driven society!
	Slide 47: Henrik Sandberg Professor in Decision and Control Systems
	Slide 48: DYNACON – DYNamic Attack detection and mitigation for seCure autONomy
	Slide 49: Secure Autonomy Challenges
	Slide 50: Testbeds

