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Large Structures in Space

My experience on large space structures:

« Centrifugally deployed Space Webs for
robotic assembly of solar space power
satellites! Simulations and Suaineadh
REXUS experiment (2 x 2 m?).

* Deployable ring structure based on the
tensegrity concept for large reflector
antennas (breadboard model D = 3 m).
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Large Structures in Space

No shortage of ideas and flight-proven large space structures based on
traditional technology but there is a need for larger structures
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Credit: CalTech- KISS Large Space Apertures Workshop, 10-11 November 2008.

~Dip sabilized in Shustle orbit



Why Large Structures in Space?

To “manipulate” the electromagnetic spectrum!
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Credit: Banik, J., Realizing Large Structures in Space, National Academy of Engineering 2015 US Frontiers of Engineering, 9-11 September 2015.




Getting to Orbit is Challenging

Rockets are volume and mass limited

Launch is violent!
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Credit: Banik, J., Realizing Large Structures in Space, National Academy of Engineering 2015 US Frontiers of Engineering, 9-11 September 2015.




Precision is Challenging

Surface errors scale with aperture size!
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Credit: Banik, J., Realizing Large Structures in Space, National Academy of Engineering 2015 US Frontiers of Engineering, 9-11 September 2015.




Structural Requirements for Large Space
Telescopes
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Passive response of structure

damping : ,
ratio (= 1%) Lowest D = diameter _ RMS |Acgeleration, g
natural n = structural mass fraction
frequency h = structural depth _
E/p = material specific stiffness Example:

fo = 10 HZ v
Passive controllby structure
Active control requirement

Note! Assuming thermally stable materials, CTE = 0.

Credits: Lake, M.S., Peterson, L. D., and Levine, M. D., “A Rationale for Defining Structural Requirements for Large Space Telescopes,” Journal of
Spacecraft and Rockets, Vol. 39, No. 5, Sept-Oct., 2002.

Lake, M. S., Peterson, L. D., Mikulas, M. M., Space Structures on the Back of an Envelope: John Hedgepeth’s Design Approach to Design, Journal of
Spacecraft and Rockets, Vol. 43, No. 6, 2006.




Structural Requirements for Large Space
Telescopes

JWST SAFIR
D=24m D=6.0m D >10m D>25m
p =200 kg/m? p=15 kg/m3 0 <10 kg/m? p~1kg/m?
f,=100 Hz f,=10 Hz 10 Hz > f,> 1 Hz f,<1Hz

Passive Set-and-Hold Active Wavefront
Stabilization Stabilization Stabilization Correction

Credit: Lake, M. S., A Vision for Reflector Technologies, CalTech- KISS Large Space Apertures Workshop, 10—11 November 2008.




Deployment Reliability and Affordability

Space flight programs have one chance at success!
Validation through simulations only not possible!
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Zero-gravity deployments are In-space thermal-vacuum

approximated with elaborate environment is simulated by
suspension cable systems. large chambers.

Credit: J. Banik, Realizing Large Structures in Space, National Academy of Engineering 2015 US Frontiers of Engineering, 9-11 September 2015.




Current Technologies Leading to
“Astronomical” Costs for New Telescopes

JWST (launch 2018) NextGen1 - . - ' | NextGen 2
6.5 meters g 9.2 meters 20 meters __
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D17 03T 025 MC = mission cost A = wavelength
MC = C = currency constant T = operating
0.11+0.09InD D = aperture diameter temperature

Credits: Banik, J., Realizing Large Structures in Space, National Academy of Engineering 2015 US Frontiers of Engineering, 9-11 September 2015.

Arenberg, J., Atkinson, C., Breckinridge, J., Conti, A., Feinberg, L., Lillie, C., MacEwen, H., Polidan, R., Postman, M., Matthews, G., Smith, E., “A New 10

Paradigm for Space Astrophysics Mission Design,” SPIE Astronomical Telescopes and Instrumentation, Montréal, Quebec, Canada. Paper 9143-36. 22-27,
June 2014.




Metrics to Compare Technologies

Simple performance metrics are critical to a thoughtful cost—benefit
analysis of competing technologies

Packaging efficiency deployed length/stowed length L, /L
Linear packaging density deployed size/stowed volume D/V,
Areal packaging density deployed area/stowed volume AlV,
Aperture mass efficiency diameter/mass D/m
Aperture surface precision  diameter/rms surface error D/ Xms
Dimensional stability coefficient of thermal expansion a
Beam performance index strength moment, bending stiffness, linear (M2ENYS /w

mass density

Solar array scaling index acceleration load, frequency, boom quantity, (af )°2 001 0TS, 0176 j 1y
area, blanket areal mass density, total mass pb Vo

Telescope mission cost diameter, wavelength, temperature of c D 10T 0%
operation 0.11+0.09InD

Credits: Banik, J., Realizing Large Structures in Space, National Academy of Engineering 2015 US Frontiers of Engineering, 9-11 September 2015.




The Ongoing Debate

: _ Self deployment?
“Using the automated orbital

assembly of a small number of self-
deployable subsystems would be a
prudent approach of a large sized

operational system”

Robotic assembly?

. -
“Additive manufactured space Additive manufacturing”

structures can be much lighter
What about the because they don’t need to

Formation flying?

COST and endure launch loads and ground
COMPLEXITY of | testing. “First we must fully exploit the
robotics? performance potential of self
= A deployable structures and high
N : strain composites.” T

pheriedel How will we P “Just build bigger rockets.”

i pl  VALIDATE in a “Forget large
relevant environment _ structures, use
on the ground? How precise are the | tormation flying of

payload-structure sparse apertures
INTERFACES? instead.”

Credit: J. Banik, Realizing Large Structures in Space, National Academy of Engineering 2015 US Frontiers of Engineering, 9-11 September 2015.




