

Towards Environment-Aware RRM for 6G: The Devil's in the Data

Ljiljana Simić

20th August 2025 | KTH, Stockholm

1980	1990	2000	2010	2020	2030	
1 G	2 G	3 G	4G	5 G	6G	

1980	1990	2000	2010	2020	2030	
1 G	2G	3 G	4G	5 G	6G	

1980	1990	2000	2010	2020	2030	
1 G	2G	3G	4G	5 G	6G	

1980	1990	2000	2010	2020	2030	
1 G	2G	3 G	4G	5 G	6G	

1980	1990	2000	2010	2020	2030	
1 G	2G	3 G	4 G	5G	6G	

Mobile wire

1980 1990

1G 2G

2030

6G

How to satisfy wireless need for speed?

High frequency bands are "spectrum-rich"!

Sub-6 GHz

FR1

BUT high frequencies can't reach far!

BUT high frequencies can't reach far!

... unless we use beamforming for directional antenna beams!

BUT high frequencies can't reach far!

... even then, easily blocked!

2020

5G & beyond

... so does it work for mobile?

Hey @Verizon! Great job on launching your mmW 5G treasure hunt in Minneapolis & Chicago! To be clear, things you need are:

- An extra \$10 a month 💰
- Modded Moto Z3
- A non-existent 5G map Mag
- No walls, trees, buildings, windows 🛇 🏥
- LOTS of luck 🍀

701 10:51 PM - Apr 3, 2019

Agile beam management is key mm-wave networking problem

- **site-specific** sparse multipath channel
- blockage by static & dynamic obstacles

Agile beam management is key mm-wave networking problem

Environment-Aware RRM for 6G Beamforming

- → leveraging non-RF sensors (LiDAR, camera, radar, GPS, etc.)
- → real-time environment awareness, e.g. via AI/ML

Environment-Aware RRM for 6G Beamforming

- → leveraging non-RF sensors (LiDAR, camera, radar, GPS, etc.)
- → real-time environment awareness, e.g. via AI/ML

Environment-Aware RRM for 6G Beamforming

→ inherently site-specific: large & diverse multi-modal sensor/RF datasets needed for AI/ML training & validation of environment-aware RRM protocols

Environment-Aware RRM for 6G Beamforming: The Devil's in the Data

- 1 diverse real-world sensing/RF datasets → measure!
- 2 high-quality synthetic data/Digital Twins -> validate!
- 3 real-time, real-world 6G RRM protocol evaluation → experiment!

Environment-Aware RRM for 6G Beamforming: The Devil's in the Data

- 1 diverse real-world sensing/RF datasets → measure!
- 2 high-quality synthetic data/Digital Twins → validate!
- (3) real-time, real-world 6G RRM protocol evaluation → experiment!

SDR-based multi-band mm-wave platform integrating multi-modal sensors

28 GHz + 60 GHz SIVERS phased-antenna arrays

fine-grained directional-directional RF
measurements (electronic sweeping of 22-beam codebooks + mechanical sector/elevation rotation)

time-synched sensor data (LiDAR, camera, GPS)

- SW framework for automatic dataset creation:
 - RF data (RSS, f-/φ- offset, TX/RX beam IDs)
 - time-synched sensor data

- large-scale measurements in Aachen: multi-band RF + multi-modal sensor datasets
 - urban outdoor
 - indoor industrial [3]

large-scale measurements in Aachen: multi-band RF + multi-modal sensor datasets

1

Measurement Platform [2] for Multi-Modal Sensing/RF Datasets

- large-scale measurements in Aachen: multi-band RF + multi-modal sensor datasets

large-scale measurements in Aachen: multi-band RF + multi-modal sensor datasets

LiDAR

camera

large-scale measurements in Aachen: multi-band RF + multi-modal sensor datasets

[2] A. Schott, A. Ichkov, B. Acikgöz, N. Beckmann, L. Reiher, and L. Simić, "A Multi-Band mm-Wave Experimental Platform Towards Environment-Aware Beam Management in the Beyond-5G Era", in Proc. WiNTECH in ACM MobiCom, 2024.

build your own!

Code available:

https://github.com/inets-rwth/GNURadio-mmWave

Environment-Aware RRM for 6G Beamforming: The Devil's in the Data

- 1 diverse real-world sensing/RF datasets → measure!
- 2 high-quality synthetic data/Digital Twins -> validate!
- (3) real-time, real-world 6G RRM protocol evaluation → experiment!

2 Validation of Wireless Digital Twin Synthetic Data:

How Detailed is Detailed Enough?

- measurement vs. ray-tracing propagation modelling for mm-wave networks

(2) Validation of Wireless Digital Twin Synthetic Data:

How Detailed is Detailed Enough?

basic environment model

Material type	Reflection loss (dB)	Color code
Brick	12.3	
Concrete	9.6	
Plasterwork	23.1	
Glass	8.4	

60 GHz ray-tracing omnidirectional output

(2) Validation of Wireless Digital Twin Synthetic Data:

How Detailed is Detailed Enough?

simulated vs. measured antenna models

(a) Beam index 24 azimuth steering angle)

(b) Beam index 44 (55° azimuth steering angle)

60 GHz ray-tracing omnidirectional output

2 Validation of Wireless Digital Twin Synthetic Data:

How Detailed is Detailed Enough?

Fig. 4: RSS prediction error of the ray-tracing output versus the measurements (as absolute value), for the basic/detailed environment and simulated/measured antenna models for 12 selected RX positions.

- median directional RSS error under 4 dB for most RX position
- similar performance for both environment models
- simulated antenna model overestimates dominant MPCs due to main lobe modeling inaccuracies

Validation of Wireless Digital Twin Synthetic Data: How Detailed is Detailed Enough?

Fig. 4: RSS prediction error of the ray-tracing output versus the measurements (as absolute value), for the basic/detailed environment and simulated/measured antenna models for 12 selected RX positions.

- simple environmental models, with all major building features modeled, sufficient
- measured antenna model of irregular codebook-based phased antenna array crucial

Environment-Aware RRM for 6G Beamforming: The Devil's in the Data

- 1 diverse real-world sensing/RF datasets → measure!
- 2 high-quality synthetic data/Digital Twins → validate!
- ③ real-time, real-world 6G RRM protocol evaluation → experiment!

6G Berlin Conference 2025 demo – we are the first to integrate:

- 1 non-RF multi-modal sensors,
- 2 low-cost FR2 transceiver frontends, and
- 3 standard-compliant beam management in OpenAirInterface

First-ever sensor input integration in **OpenAirInterface for** environment aware RRM Lidar camera driver driver prediction

First-ever lab-verification of beam sweeping based on generated SSBs

First-ever integration of popular low-cost SIVERS 28/60 GHz transceivers

Fast beam switching via SPI/GPIO control.

Conclusions

- leveraging sensor-aided **real-time environment awareness**, e.g. via AI/ML, for agile beam management is key to **unlocking the potential of spectrum-rich bands for 6G**
- for environment-aware RRM for 6G beamforming: "the devil's in the data"
 - 1 diverse real-world sensing/RF datasets → measure!
 - ② high-quality synthetic data/Digital Twins → validate!
 - ③ real-time, real-world 6G RRM protocol evaluation → experiment!

