

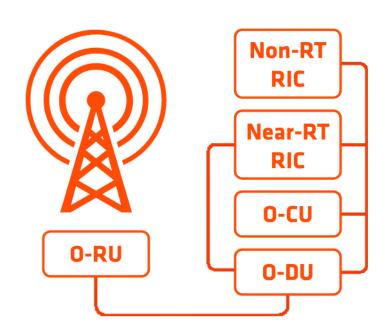
Energy Saving for Cell-Free Massive MIMO Networks: A Multi-Agent Deep Reinforcement Learning Approach

Presenter: Qichen Wang

Cell-Free Massive MIMO in O-RAN Architecture

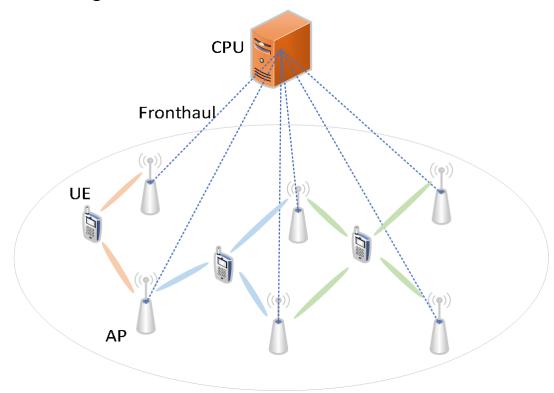
O-RAN Components:

- Non-RT RIC: long-term policy training, datadriven optimization
- Near-RT RIC: short-term control and coordination
- O-CU / O-DU / O-RU: handle protocol layers and radio operations



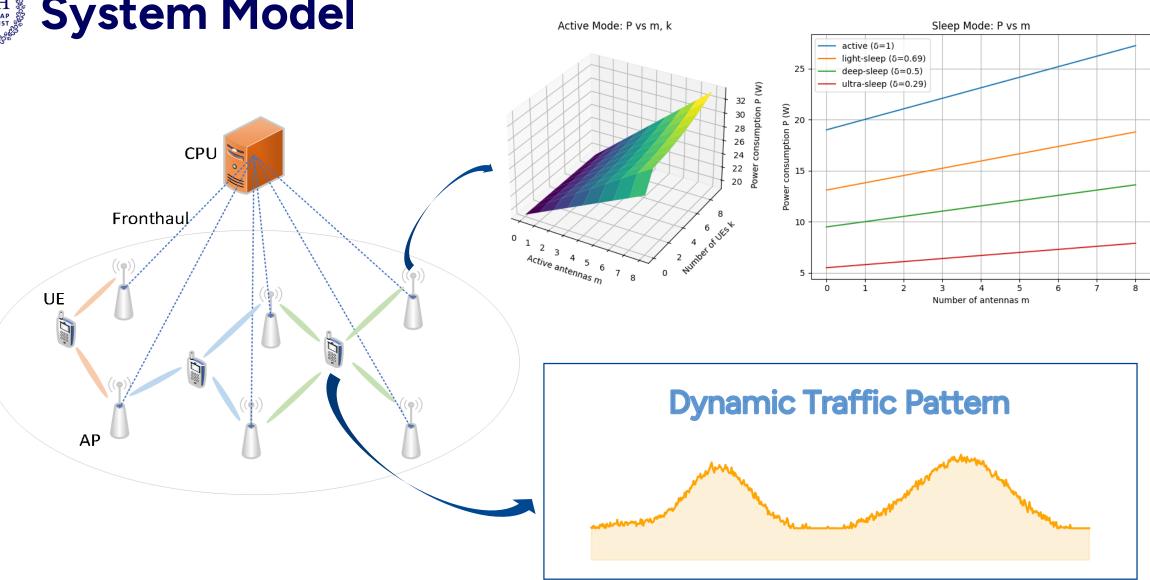
Cell-Free Massive MIMO:

- Each UE is jointly served by a subset of distributed APs
- CPU coordinates APs via fronthaul links
- Enables uniform service quality across the entire coverage area

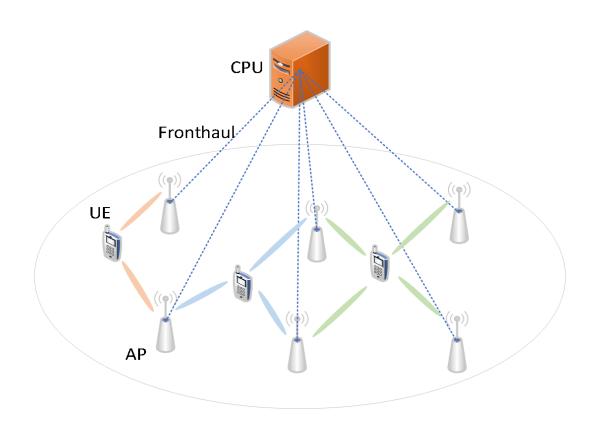


Aspect	Traditional Optimization	AI-based Approach
Non-convexity handling	Requires convexification or approximations;	Learns complex nonlinear relationships and
	often yields local optima.	achieves near-optimal solutions without con-
		vexity assumptions.
Real-time adaptability	Iterative solving is slow; unsuitable for dy-	Enables fast, real-time decision making
	namic network conditions.	through trained models.
Model dependency	Depends on accurate analytical models and full	Data-driven; effective even with imperfect or
	system knowledge.	unknown models.
Generalization ability	Needs re-optimization under new traffic or	Learns transferable policies that generalize to
	environmental changes.	unseen scenarios.

• Al-based methods overcome the limitations of traditional optimization by enabling data-driven, real-time, and adaptive energy-efficient control in dynamic networks.



Problem Formulation



$$\begin{aligned} & \min_{s_l, \, m_l, \, \forall l} \quad P_{\text{net}} \\ & \text{s.t.} \quad \frac{1}{K} \sum_{k=1}^K \rho_k \geq 1 - \delta_{\text{drop}}, & \forall k, \\ & m_l \in \left\{0, 1, \dots, M_{\text{max}}\right\}, & \forall l, \\ & \tau_l^{\text{str}} = \begin{cases} 0, & m_l = 0, \\ \leq m_l - 1, & m_l \geq 1, \end{cases} & \forall l, \\ & s_l \in \left\{0, 1, 2, 3\right\}, & \forall l. \end{aligned}$$

Goal:

• Minimize power consumption P_{net}

Optimization:

- Antenna activation m_l
- Sleep mode s_1

Constraints:

- Drop ratio (QoS) δ_{drop}
- Pilot signals au_l^{str}

RL Algorithm Design

State S:

Each agent observes partial local information (e.g., PC, number of activated antennas, sleep mode) and aggregate UE statistics (e.g., total demand and achieved rate), along with neighboring AP states.

Action A:

$$A = A_m \times A_s$$

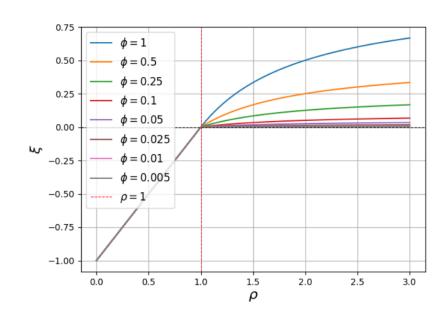
- $A_m = \{-1, 0, 1\}$: antenna switching
- $A_s = \{0, 1, 2, 3\}$: sleep level

Reward R:

$$R = w_{\rm rs} \frac{1}{K} \sum_{k=1}^{K} \xi_k - w_{\rm pc} P_{\rm net},$$

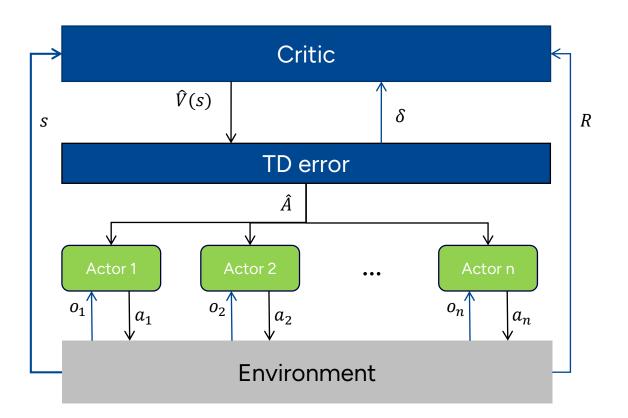
• Rate satisfaction: $\xi_k = \begin{cases} \rho_k - 1, & \rho_k < 1, \\ \phi\left(1 - \frac{1}{\rho_k}\right), & \rho_k \geq 1. \end{cases}$

• ρ_k : $\frac{\text{achieved rate of UE } k}{\text{demanded rate of UE } k}$



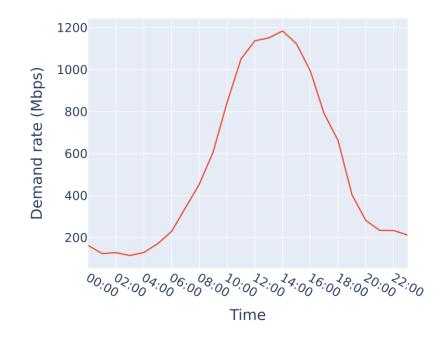
Multi Agent Proximal Policy Optimization (MAPPO)

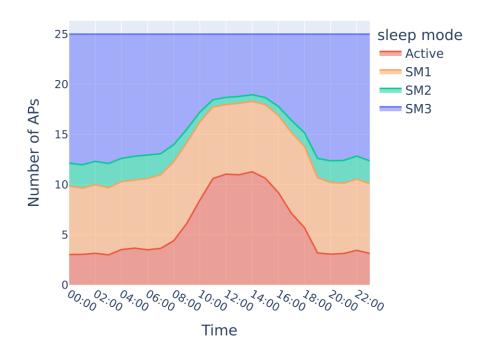
- Independent actor: independent policy
- Centralized critic: stationary learning signal
- Global reward: optimizing a shared objective



Simulation Results

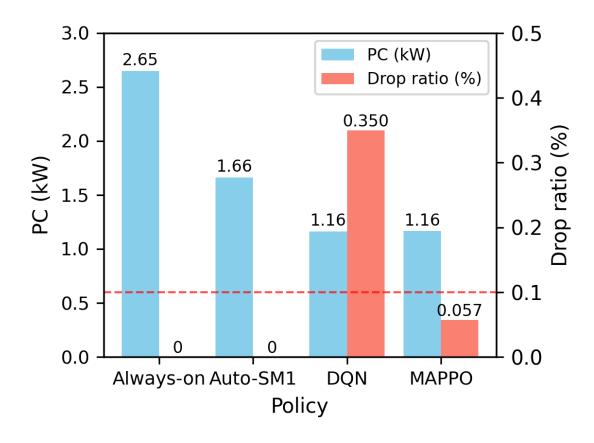
- Always-on: vanilla policy
- Auto-SM1: load-dependent mechanism
- DQN: widely used RL algorithm
- MAPPO-based algorithm can dynamically adapt antenna and sleep according to traffic condition.





KTH Simulation Results

 MAPPO demonstrates superior energy efficiency compared to the non-learning baselines, achieving a 56.23% reduction in relative to the Always-on and a 30.12% reduction compared to Auto-SM1.



Thank you