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MIMO Networks: A Multi-Agent
Deep Reinforcement Learning
Approach
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O-RAN Components: Cell-Free Massive MIMO:
* Non-RT RIC: long-term policy training, data- * Each UE is jointly served by a subset of
driven optimization distributed APs
* Near-RT RIC: short-term control and » CPU coordinates APs via fronthaul links
coordination .

Enables uniform service quality across the entire
« O-CU/O-DU / O-RU: handle protocol layers and coverage area

radio operations
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Source: Firecell, “Learn Open RAN,” https://firecell.io/learn/open-ran/.
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Aspect

Traditional Optimization

Al-based Approach

Non-convexity handling

Real-time adaptability

Model dependency

Generalization ability

Requires convexification or approximations;

often yiclds local optima.

Iterative solving is slow; unsuitable for dy-
namic network conditions.

Depends on accurate analytical models and full
system knowledge.

Needs re-optimization under new traffic or

environmental changes.

Learns complex nonlinear relationships and
achieves near-optimal solutions without con-
vexity assumptions.

Enables fast, real-time decision making
through trained models.

Data-driven; effective even with imperfect or
unknown models.

Learns transferable policies that generalize to

unseen scenarios.

» Al-based methods overcome the limitations of traditional optimization by enabling data-driven, real-time,

and adaptive energy-efficient control in dynamic networks.
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d%xﬁm —— active (6=1)
—— light-sleep (6=0.69)
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Problem Formulation

CPU ‘\:

Fronthau"l’,_.«"‘
- i I:", '
UE 5 U
I
AP

min Piet

S;,m;,"v".‘.'

| K
S.1. ie Z Pr = 1 — Odrop,

my € {0,1,..., Mmax},

0, my = 0,
<my—1, my>1,
s; € {0,1,2,3},

Goal:

* Minimize power consumption P,,,;
Optimization:

* Antenna activation m;

* Sleep mode s

Constraints:

*  Drop ratio (Q0S) 84r0p

* Pilot signals 77"

VE,
Vi,
Vi,
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{52 RL Algorithm Design
St Reward R:
. K
State S: R = wm% Z &k — Wpe Prets
Each agent observes partial local k=1
information (e.g., PC, number of activated L . Pr — 1, pr <1,
antennas, sleep mode) and aggregate UE * Rate satisfaction: & = 1) (1 — L) . pr > 1.
statistics (e.g., total demand and achieved . . achieved rate of UE k& o
rate), along with neighboring AP states. Pie: demanded rate of UE k
0.75 = ¢=1
Action A: T e
OB 4=01
A=A, XA ool — 9=005
" — ¢=0.025
« A,, ={—1,0,1}: antenna switching A I,
-0.50 4 _____. p=1

« Ay, =1{0,1,2,3}: sleep level 075 /
-1.00
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(% Multi Agent Proximal Policy Optimization (MAPPO)

* Independent actor: independent policy

* Centralized critic: stationary learning signal

» Global reward: optimizing a shared objective 4]

— Environment —
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Simulation Results

Always-on: vanilla policy

Auto-SM1: |load-dependent mechanism

DQN: widely used RL algorithm

MAPPO-based algorithm can dynamically adapt

antenna and sleep according to traffic condition.
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« MAPPO demonstrates superior energy efficiency compared to the non-learning baselines,
achieving a 56.23% reduction in relative to the Always-on and a 30.12% reduction compared to

Auto-SM1.
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