AIl/ML in Wireless Networks:

e From Learning to Over-the-Air Computation
G2 oy,
fKTH=® Carlo Fischione
%o 0cH KONST & carlofi@kth.se
Boatt

October 12-th, 2025

SweWIN

% Swedish Wireless Innovation Network



mailto:carlofi@kth.se

L,
| | [ ]
tKTHY  Many Use-cases of AI/ML in Wireless Networks
28 OCH KONST 2%
Bt
Use cases Future agenda item
10T devices : Base stationy/Edge devices AlI/ML receivers for DM-RS overhead | 11.8 MIMO
L' o : reduction
v‘f, y S I
o % Pt Use cases for | EW USE CaSES | Ay based CSI-RS overhead reduction | 1.8 MIMO
— > I =
- | f’;G Rel-20 study Al/ML-based digital post-distortion (DPoD) | 11.5 Energy efficiency
r item
- - : Enhancement of | Beam management enhancement 11.8 MIMO
= existing 5G NR "
, ; USE cases CSl prediction enhancement 11.8 MIMO
B n L
i g ;?( 3 - | Adopt in 6G 5G Rel-19 beam management
\w . WAl : without a study 5G Rel-19 positioning Case 1/3a/3b N/A
item phase 5G Rel-19 CSl prediction

« Communication Infrastructures, Smart Cities, Smart Grids, Autonomous Vehicles...

» Several use cases in 3GPP standardization:
— CSI management, beam management, positioning
— Proprietary features with limited or without (extra) standards support: link adaptation
— Network and Enterprise digital twins
— ITU-R “beyond communications” features (ISAC, imaging, environmental reconstruction)
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» “A great step forward came with the teletotal, which in principle was a combination of automatic telephone,
radio, and TV.”

* In Alfven’s vision, teletotal was an omnipresent communication and computing network, capable of
automating decision making, commerce, education, justice etc., via central computers.
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In wireless networks, it is difficult to make Al/ML training and inference

The networks and devices are distributed, heterogeneous, even using different communication
protocols and software

Inference on a device/access network needs data from other devices and network locations as
a collaborative effort

A major concern is energy-efficiency,
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1. AI/ML over Networks

2. AI/ML for Networks 3. Networks for Al/ML

1. AI/ML over wireless networks;
2. AIl/ML for networks;
3. Networks for Al/ML.
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2. AlI/ML for Networks 3. Networks for AlI/ML

1. Al/ML over wireless networks;
2. AI/ML for networks;
3. Networks for Al/ML.
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* In Federated Learning a subset of devices, sampled from K devices, participate in rounds to
locally compute a global ML model
« Each device solves a local empirical risk problem
W?_l =wh — Vi (wh), t=1,2,...
« where £ (w?) := 0(fr(xi : Wi), y:)is local loss function of local data
* The devices send the local model ch to the Parameter Server

K
« The Parameter Server makes a global model as the average of the local models witl = Z
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Problem: Traditional Federated Learning

@

« Scalability Issues: Handling very large
number of edge devices leads to
scheduling, coordination, and reliability
problems.

« Communication Inefficiency: Frequent

transmission of high-dimensional model

updates strains communication
bandwidth.
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Solution: Hierarchical Federated Learning

 Introduce intermediate aggregators
(e.g., at cell towers or edge servers) to
reduce server load.

» Quantized Updates: Send only
quantized gradients instead of full-
precision vectors

Results: reduces communication and
computation costs .

S.M. Azimi-Abarghouyi, C. Fischione, Multi-Layer Hierarchical Federated Learning with Quantization, IEEE TON (under review)
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1. AI/ML over Networks

2. AI/ML for Networks 3. Networks for Al/ML

1. AI/ML over wireless networks;
2. AIl/ML for networks:
3. Networks for Al/ML.
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 QoS: network performance obtained by the users.
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— measured by throughput, latency, packet loss, or wireless channel quality.

— affected by the propagation environment and the traffic load.

 Wireless protocols will use predictive QoS (pQoS) to ensure the actual QoS.

— If not, the protocols must take countermeasures to satisfy the communication

requirements.

 Can ML perform temporal predictions of the QoS?
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The model-based Kalman filter performs well in the case with perfect channel knowledge on

short prediction horizons.
The GRU performs better in noisy scenarios and on long prediction horizons.

O. Stenhammar, G. Fodor, C. Fischione, A comparison of neural networks for wireless channel prediction, |IEEE Wireless Communications, 2024
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1. AI/ML over Networks

2. AlI/ML for Networks 3. Networks for Al/ML

1. AI/ML over wireless networks;
2. AIl/ML for networks;
3. Networks for AI/ML.
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Computation over-the-air in the wireless medium.

Integrate communication and computation.

Shared bandwidth among users in time, frequency, and code domain.

Most of current research relies on analog communications.

We have introduced digital communications for over-the-air computations
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« Key idea: make the overlappings of digitally modulated signals distinguishable

S. Razavikia, J.M.Barros Da Silva Jr., C. Fischione, ChannelComp: A general method for computation by communications, |EEE Transactions on

Communications, 2023
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« “The Americans have need of the telephone, but we do not. We have plenty of messenger
boys”. Sir William Preece, Chief Engineer of the British Post Office, 1876.

» “Cellular phones will absolutely not replace local wire systems”. Marty Cooper, the father of the
cell phone, 1974

2025-10-12 15
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Conclusions: a Very Rich and Active Research Domain!

Al/ML TRENDS IN WIRELESS RESEARCH
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