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Introduction
Big Data and Huge Learning Models

Huge learning models (Duarte, 2025): 4× 1020 bytes per day!
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Introduction
Big Data and Huge Learning Models

Huge learning models (Duarte, 2025): 4× 1020 bytes per day!

There is a need for large-scale computations

Computations cannot be done in a centralized manner
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Introduction
Computation Offloading Framework: Opportunities and Bottlenecks
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f(X 1, X 2, . . . , XK )
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W1 W2 W3 WN

Goal : f(X 1, X 2, . . . , XK )

Master

Challenges?

▶ Stragglers

▶ Adversaries

▶ Privacy Concerns

▶ Comm Efficiency

▶ ...

® How to address these challenges?
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Introduction
Computation Offloading Framework: Adding Redundancy

� Redundancy → Coded version of data (raw data)

Adapted from [S. Avestimehr, ICML 2019, SlidesLive]
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® How can data be encoded s.t.
computations performed on them
remain meaningful?
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Introduction
Computation Offloading Framework: Adding Redundancy

X 1, X 2, . . . , XK

. . .

Encoder

Decoder

f (X 1, X 2, . . . , XK )

Workers

Data

Goal :

W1 W2 W3 WN

Codes over Finite Field

▶ Short-Dot (Dutta et al., 2016)

▶ Polynomial Codes (Yu et al., 2017)

▶ LCC (Yu et al., 2019)

▶ CSA Codes (Jia and Jafar, 2021)

▶ . . .
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Coded Computation over Finite Field
Lagrange Coded Computing (LCC)

X1, . . . , XK ∈ Fq

Goal : f(X1), . . . , f(XK) with Min N

Any T

Collude

Master

. . .

Any A Adversaries

Any S

Stragglers . .
.

Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and S. A. Avestimehr, “Lagrange coded computing:
Optimal design for resiliency, security, and privacy,” in The 22nd International Conference on Artificial Intelligence and
Statistics. PMLR, 2019, pp. 1215–1225
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Coded Computation over Finite Field
Lagrange Coded Computing (LCC)

Theorem - LCC (Yu et al., 2019)

Given N workers and a dataset X = (X 1, . . . ,XK ), LCC framework provides
an S-resilient, A-secure, and T -private scheme for computing {f (X i )}Ki=1 for
any polynomial f functoion, as long as

(K + T − 1) deg f + S + 2A+ 1 ≤ N.
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Coded Computation over Finite Field
Lagrange Coded Computing (LCC)

▶ Embedding Data with some randomness into a polynomial

u(z) ≜
∑
j∈[K ]

X j ·
∏

k∈[K+T ]\{j}

z − βk

βj − βk
+

K+T∑
j=K+1

U j ·
∏

k∈[K+T ]\{j}

z − βk

βj − βk
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Coded Computation over Finite Field
Lagrange Coded Computing (LCC)

▶ Select N distinct points on the polynomial u(z).

▶ Assign each worker a coded data point and have them compute on it: f (X̃ 1), . . . , f (X̃N)
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Coded Computation over Finite Field
Lagrange Coded Computing (LCC)

▶ {f (X̃ i )}Ni=1, as well as {f (X i )}Ki=1, lie on f (u(z))

▶ It is enough to interpolate f (u(z))

▶ N ≥ #points needed for f (u(z)) interpolation
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Coded Computation over Finite Field
Challenges and Limitations (Moradi et al., 2024)

▶ Threshold-dependent: If the number of workers drops below a threshold, recovery fails

▶ Only works for specific types of computations

▶ All solutions apply to finite fields: Quantization can cause significant accuracy loss

▶ “These methods are unsuitable for approximate computing, where exact computation is
neither possible nor necessary”
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Coded Computation over Finite Field
Challenges and Limitations (Moradi et al., 2024)

▶ Threshold-dependent: If the number of workers drops below a threshold, recovery fails

▶ Only works for specific types of computations

▶ All solutions apply to finite fields: Quantization can cause significant accuracy loss

▶ “These methods are unsuitable for approximate computing, where exact computation is
neither possible nor necessary”

� Idea: Compute in the real field instead!
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Coded Computation over Real Field
-

▶ Can we naively perform these operations in the real field?
▶ Lagrange interpolation solves a linear system of equations with a Vandermonde matrix.
▶ Condition number grows exponentially with matrix size

V =


1 a1 a21 · · · an−1

1

1 a2 a22 · · · an−1
2

...
...

... . . . ...
1 an a2n · · · an−1

n



Severe Numerical Instability!

V. Y. Pan, “How bad are vandermonde matrices?” SIAM Journal on Matrix Analysis and Applications, vol. 37, no. 2,
pp. 676–694, 2016
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Coded Computation over Real Field
-

Works in the literature (Moradi et al., 2024)

▶ Modifying coding mechanisms to improve numerical stability
▶ LCC over real field (Soleymani et al., 2021)
▶ Chebyshev polynomials instead of monomial basis (Fahim and Cadambe, 2021)
▶ Structured matrices for evaluation points (Ramamoorthy and Tang, 2022)

▶ Sacrificing exactness and using approximation techniques
▶ Embedding the data into a smooth rational function (Jahani-Nezhad and Maddah-Ali, 2023)
▶ Embedding the data into a bigger class of functions, i.e., second order Sobolev space

(Moradi et al., 2024)

▶ Approximating non-polynomial functions using polynomials (So et al., 2021)
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Our Ongoing Research
-

▶ Not all challenges associated with finite-field computation have been fully resolved.

▶ In the analog domain, existing works address either straggler mitigation, Byzantine
robustness, both issues, or privacy. A unified framework that tackles all aspects is still
missing (Ulukus et al., 2022).

▶ Except for a few recent works, existing schemes are coding-theoretic rather than
learning-theoretic.

▶ Most of the existing works in the literature have studied perfect privacy.
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Our Ongoing Research
-

Meanwhile, we are also exploring another research direction in SweWIN’s area 4,
Resilience and Security, focusing on studying the fundamental limits of designing fair
representations under different notions of fairness:

A. Zamani, A. Changizi and M. Skoglund, ”On information theoretic fairness: From perfect to
bounded demographic parity,” IEEE Transactions on Information Theory. Submitted August 2025.

A. Zamani, A. Changizi, R. Thobaben, and M. Skoglund, ”Information-theoretic fairness with a
bounded statistical parity constraint,” in Proc. IEEE WiOpt 2025.
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Thank you!
Questions or comments?
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