
MOOSE: Model Based Optimal Input Design
Toolbox for Matlab

Technical Report

Mariette Annergren Christian Larsson
mariette.annergren@ee.kth.se christian.larsson@ee.kth.se

July 11, 2013

Contents
1 Introduction 3

1.1 MOOSE . 3
1.2 Optimal input design formulation . 3
1.3 Quick tutorial . 3

1.3.1 Setting up the problem . 3

2 Using the toolbox 6
2.1 Installation of MOOSE . 6
2.2 mooseBegin and mooseEnd . 6

2.2.1 The mooseBegin command 6
2.2.2 The mooseEnd command 6

2.3 Models . 6
2.4 Objectives . 7
2.5 Identification constraints . 8

2.5.1 Spectrum . 8
2.5.2 Probability . 8
2.5.3 Number of samples . 8

2.6 Application constraints . 9
2.6.1 Ellipsoid . 9
2.6.2 Scenarios . 9

2.7 Spectral factorization . 9
2.8 Extra functions . 9

2.8.1 firreal() . 10
2.8.2 ellipse() . 10
2.8.3 hessian() . 10

3 Implementation 11
3.1 Interfaces . 12

4 Future versions 13
4.1 Planned features . 13

5 Theoretical background: Optimal input design 14
5.1 Dynamic system and model . 14
5.2 Prediction error method . 14
5.3 Spectrum of input signal . 16

5.3.1 Finite dimensional parameterization 17
5.4 Input generation . 17
5.5 Application set . 17
5.6 Optimal input design problem . 18

5.6.1 Scenario approach . 18
5.6.2 Ellipsoidal approximation 18

5.7 Performing system identification experiments 19
5.7.1 Approximate application cost 19

MOOSE

1 Introduction

1.1 MOOSE
MOOSE is a model based optimal input design toolbox developed for Matlab. The goal
of the toolbox is to simplify the implementation of optimal input design problems. It
provides an extra layer between the user and a convex optimization environment. The
interface to the user is very much inspired by CVX [8].

This user guide requires some knowledge about optimal input design. For a theo-
retical background and introduction of the notation used, see Section 5.

1.2 Optimal input design formulation
MOOSE is designed to handle input design problems of the form

minimize
Φu

objective

subject to ESI(α)⊆ Θapp(γ)
β (ω)≤ Φu(ω)≤ δ (ω), ∀ω .

The optimization problem is solved through the ellipsoidal relaxation or the scenario
optimization approach. Both the input design problem and the methods for solving
it are described in detail in Section 5.6. The problem is set up in Matlab by using a
series of keywords in a MOOSE declaration block. The quick tutorial gives a short
introduction to using MOOSE by a simple example. Further details on keywords, lower
level implementation in MOOSE and theoretical background of optimal input design
are presented in the following sections.

1.3 Quick tutorial
This tutorial presents the process of declaring and solving an optimal input design
problem in MOOSE.

1.3.1 Setting up the problem

Consider input design for the system

G(θ ,q) = θ1u(t −1)+θ2u(t −2)+ e(t),

with true parameter values θ = [10 − 9] and noise variance var{e} = λ = 1. The
objective is to solve the optimization problem

minimize
Φu(ω)

E{u2}

subject to ESI(0.95)⊆ Θapp(100)
Φu(ω)≥ 0, ∀ω

using an FIR-input spectrum with 20 lags, i.e. coefficients in the spectral density func-
tion defined in Section 5.3, 100 samples of data and the ellipsoidal relaxation. A Matlab
implementation of the problem is presented below.

3

1.3 Quick tutorial MOOSE

% Setup system and model
theta = [10 -9];
G = tf([0 theta],1,1,’variable’,’z^-1’);
H = tf(1,1,1,’variable’,’z^-1’);
Lambda = 1;
% Moose declaration block
mooseBegin

objective minimize(inputPower)
model G H Lambda
identification constraints

spectrum phiU = FIR(20)
probability 0.95
numSamples 100

application constraints
ellipsoid(@Vapp,100)

mooseEnd
optimalFilter = mooseProblem.spectralFactor;

% Example application cost where the estimate
% of theta2 is important
function V = Vapp(theta)

theta0 = [10 -9];
V = norm(theta(2)-theta0(2),2);

end

The first three lines setup the model for the nominal system, the noise transfer functions
and the noise variance.

The MOOSE declaration block begins with the mooseBegin command. This cre-
ates the mooseProblem variable in the workspace where the input design is stored.

The eight basic keywords are then used to setup the problem:

• objective sets the optimization objective function, in the example the input
power is minimized.

• model sets the nominal system, noise model and noise variance.

• identification constraints has no formal action but can be used to
make the declaration clearer.

• spectrum sets the spectrum type. The non-negativity constraint is handled au-
tomatically.

• probability is the level of the confidence ellipsoid.

• numSamples sets the number of samples used in the identification experiment.

4

1.3 Quick tutorial MOOSE

• application constraints has no formal action but can be used to make
the declaration clearer.

• ellipsoid adds the ellipsoid defined by the Hessian of Vapp to the set Θapp.

The MOOSE declaration block ends with the mooseEnd command. In addition
to closing the block, it also calls an optimization problem solver to find the optimal
design.

The last line gets the optimal spectral factor which can be used to realize an input
signal.

In the example some keywords have been assigned variable names. This makes the
keyword available inside the MOOSE declaration block so that it can be used in, for
example, the objective function. When the MOOSE declaration block is closed, named
variables remain available in the Matlab workspace.

5

MOOSE

2 Using the toolbox

2.1 Installation of MOOSE
To install MOOSE, download the toolbox catalog and then run the command mooseSetup.
The toolbox is based on CVX, a package for specifying and solving convex programs
[8]. Thus, you also need to have CVX installed to be able to use MOOSE.

2.2 mooseBegin and mooseEnd
An input design problem is defined in MOOSE in a MOOSE declaration block.

2.2.1 The mooseBegin command

The mooseBegin command declares the beginning of a MOOSE declaration block.
When the command is called, two things happen. First, the other keywords needed in
the problem declaration are activated. Second, a variable mooseProblem is created
in the workspace to handle the input design declaration.

The MOOSE keywords are not available outside of a MOOSE declaration block.
Thus, any conflict with other Matlab functions is minimized.

2.2.2 The mooseEnd command

The mooseEnd command declares the end of a MOOSE declaration block. When the
command is called the input design problem is passed to CVX and solved. The solver
print out and optimal value are shown in the command window.

2.3 Models
Two types of models are supported by MOOSE. They are transfer function and state
space models. The transfer function model is defined as

Mt f : y(t) = G(q−1,θ)u(t)+H(q−1,θ)e(t), (1)

where G and H are transfer functions and q−1 is the backward shift operator. The state
space model is defined as

Mss : x(t +1) = F(θ)x(t)+G(θ)u(t)+K(θ)e(t),
y(t) = H(θ)x(t)+ e(t),

(2)

where F , G, K and H are matrices. The noise signal e(t) is, for both models, a white
Gaussian process with covariance matrix Λ. The unknown parameter vector is denoted
θ .

To declare a Mt f in MOOSE you would type

mooseBegin
model G H Lambda

mooseEnd

where G and H are the discrete transfer functions in model (1). They are declared using
Matlab’s tf-command. The third argument, Lambda, is the covariance matrix of the
noise.

To declare a Mss, you would instead type

6

2.4 Objectives MOOSE

mooseBegin
model F G H K Lambda Ts

mooseEnd

where F, G, K, H are the matrices in model (2). The fifth argument, Lambda, is the
covariance matrix of the noise and the sixth argument, Ts, is the sampling time. An
initial estimate of the unknown parameters θ is used when declaring both Mt f and
Mss.

MOOSE assumes that the models are completely parameterized, all coefficients
in the model are considered as separate parameters. When this is not the case, you
can declare which of the parameters in the model are known and which you need to
estimate. For instance an Mt f can be declared in the following way:

G = tf({[10 -9]},{[1 0 0]},1);
H = tf({1},{1},1);
Gindex = ’{[1 2]},{[0 0 0]}’;
Hindex = ’{0},{0}’;

mooseBegin
model G(Gindex) H(Hindex) Lambda

mooseEnd

The unknown parameters are numbered 1,2, . . . and the known parameters are num-
bered 0. Each number is assigned to the parameter situated at the same position in the
tf-declaration of G and H. If you know that two or more coefficients are alike, you
assign them the same number.

An Mss can be declared in the following way:

mooseBegin
model F(Findex) G(Gindex) H(Hindex) K(Kindex) Lambda Ts

mooseEnd

The numbering syntax is the same as for Mt f but the arguments, Findex, Gindex,
Kindex and Hindex are matrices instead.

It is possible to name your models. This is done simply by writing

mooseBegin
model modelName = G H Lambda

mooseEnd

and equivalently for state space models.

2.4 Objectives
There are two default objectives supported by MOOSE. They are D-optimality [1] and
minimization of input power. These objectives are declared as

mooseBegin
objective dOptimality

mooseEnd

and

7

2.5 Identification constraints MOOSE

mooseBegin
objective minimize(inputPower)

mooseEnd

NB! When the objective is D-optimality, the maximum input power needs to be set
to obtain a well posed optimization problem, see Section 2.5.1.

Sometimes it is desirable to express the objective using the spectrum coefficients,
number of samples and so forth. As long as the objective function remains convex
in the decision variables, the design problem will remain convex. This is not fully
implemented in the current version and is therefore not documented.

2.5 Identification constraints
The keyword identification constraints does nothing. It is only provided
to make the problem declaration more readable. The spectrum, probability
and numSamples keywords can be viewed as identification constraints. That is, con-
straints regarding the identification procedure of the system.

2.5.1 Spectrum

One type of input spectrum is supported by MOOSE. It is the FIR spectrum, see Section
5.3. To declare an FIR spectrum in MOOSE you type

mooseBegin
identification constraints

spectrum spectrumName = FIR(50)
mooseEnd

where nameSpectrum is the name of the spectrum. The name can be omitted. The
argument, in this example 50, is the number of coefficients in the FIR spectrum. It is
possible to set a maximum input power by declaring

spectrumName.maxPower = maximumPower;

2.5.2 Probability

To declare the probability that you want to have in your optimal input design you type

mooseBegin
identification constraints

probability probabilityName = 0.95
mooseEnd

where the probability is given in decimal form.

2.5.3 Number of samples

The number of samples that is to be used in the identification experiment is declared in
the following way:

mooseBegin
identification constraints

numSamples numSamplesName = 100
mooseEnd

8

2.6 Application constraints MOOSE

2.6 Application constraints
The keyword application constraints does nothing. It is, as for
identification constraints, only provided to make the problem declaration
more readable. Currently ellipsoid and scenarios are available to define the
application constraints. That is, constraints regarding the required performance of the
model.

2.6.1 Ellipsoid

The keyword adds an ellipsoid to the application constraints. The syntax is

mooseBegin
application constraints

ellipsoid(fun,gamma)
mooseEnd

The argument fun can be a function handle to an application cost or the Hessian of the
application cost evaluated at the true parameter values. The format of the application
cost must be

function V = Vapp(theta)

The argument gamma is the accuracy which sets the value for the level curve that
gives the ellipsoid. For a theoretical description of the application cost and the accuracy
γ , see Section 5.5.

2.6.2 Scenarios

The keyword adds scenario constraints to the application constraints. The syntax is

mooseBegin
application constraints

scenarios(mat,gamma)
mooseEnd

The argument mat is a fat matrix where the first rows contain the scenarios and the last
row the application cost values at each scenario. The argument gamma is the accuracy
which sets the maximum application cost value.

2.7 Spectral factorization
Once a MOOSE problem has been solved you can get the stable minimum phase spec-
tral factor of the optimal input spectrum. The syntax is

optH = mooseProblem.spectralFactor;

2.8 Extra functions
Other functions which are included in the toolbox are explained in the following sec-
tions.

9

2.8 Extra functions MOOSE

2.8.1 firreal()

The Matlab function firreal() yields a filter for the optimal input signal given the
auto-correlation sequence of the optimal input signal and the sampling time used in the
design.

2.8.2 ellipse()

The Matlab function ellipse() plots an ellipse and its center point given a matrix,
a point and the desired color of the plot.

2.8.3 hessian()

The Matlab function hessian() calculates the Hessian of a function at a particular
point given the function and the point. It is part of a Matlab package named Adaptive
Robust Numerical Differentiation created by John D’Errico [6].

10

MOOSE

...

oidProblem Parser

..

Spectra

.

Models

.

Constraints

.

User Interface

.

Help functions

.

CVX

.

SDP Solvers

.

MOOSE

.oidProblem

Figure 1: The structure of the MOOSE implementation. The user interacts with the top
layer through the user interface and the help functions. The lower layers of MOOSE are
used to define and store the optimal input design problem. The last layer of MOOSE is
a parser that converts an instance of oidProblem to a CVX problem. MOOSE relies on
CVX and SDP solvers to solve the optimization problem.

3 Implementation
The implementation of MOOSE uses the object-oriented programming capabilities of
Matlab. The structure of the implementation is presented in Figure 1. The design is
built around a predefined set of interfaces for the necessary component of the optimal
input design problem.

User interaction with MOOSE is typically done through the user interface and
in some cases through the help functions. The user interface is based on a set of
keywords that define an optimal input design problem.

The central object is the class oidProblem where the input design problem is
stored. Every instance of oidProblem contains a model- and a spectrum-instance
and one or more constraint-instances.

Abstract classes are used for the model, spectrum and constraint classes to define
interfaces. This allows for easy implementation of new models, spectra and constraint
classes. An abstract class is also defined for the parser.

There is no optimization implemented in MOOSE. Instead the toolbox relies on
external SDP solvers for solving the defined optimization problem. An abstract parser
class defines the interface of the parsers used to construct the SDP from an
oidProblem. Currently the only implemented parser is to CVX.

11

3.1 Interfaces MOOSE

3.1 Interfaces
Abstract classes are used to define interfaces for the subclasses of the oidProblem
and the parser-class. The current structure of the interfaces is not expected to be used
in future versions of MOOSE and are therefore not presented here.

12

MOOSE

4 Future versions
At the time of writing, the MOOSE project is in its initial stages and the first version
of the toolbox is just released. The project is however very active with many planned
extensions in future versions of the toolbox. The features with highest priority for
implementation are presented here. If any other features are requested, contacting the
creators is most appreciated. Any other comments are also welcome.

A complete API for the toolbox is planned to be released in the near future. Users
are encouraged to implement their own classes as they are needed. Well implemented
contributions may be included in future versions of the toolbox.

4.1 Planned features
The most highly prioritized features for coming version of MOOSE are:

• Spectrum types, in particular discrete spectra, from signals that are sums of si-
nusoids, and spectra that use partial correlation parameterization [10].

• Physically parameterized state space models.

• Optimization objectives, in particular output variance, joint input and output vari-
ance.

• Multiple application costs.

13

MOOSE

5 Theoretical background: Optimal input design
The objective with optimal input design is to deliver a model that, when used in the
intended application, results in an acceptable performance. This is achieved by con-
structing a particular input signal to be used in the system identification experiment.
The obtained model is highly dependent on the input signal used. Thus, by design-
ing the input we are in a way designing the model obtained from the identification
experiment.

5.1 Dynamic system and model
We consider a multivariate linear time invariant discrete time dynamic system. It is
asymptotically stable. The system has sequences corresponding to an impulse response
{gk}, input signal {u(t)}, output signal {y(t)}, noise filter impulse response {hk} and
additive zero mean white Gaussian noise {e(t)} with a known variance Λ. The output
response can be expressed as

y(t) =
∞

∑
k=1

gku(t − k)+hke(t − k), t = 1,2, . . . (3)

The dynamic system can be approximated by a parametrized model. Given a struc-
ture, the model response is expressed as

M (θ) : y(t) = G(q,θ)u(t)+ v(t), (4a)
v(t) = H(q,θ)e(t), (4b)

where v(t) is the filtered noise signal. The transfer functions G and H are parameterized
by θ ∈ Rn and q is the forward-shift operator.

The true system is assumed to be parametrized by the same structure as the model.
Thus, there exist parameters θ 0 such that the output response (3) can be written as

S : y(t) = G(q,θ 0)u(t)+ v0(t),

v0(t) = H(q,θ 0)e(t).

The unknown parameters are θ , the true values of the parameters are θ 0 and the
estimated parameters based on N observations are θ̂N . The observations consist of
observed output and input signal sequences, ZN = {y(t),u(t)}N

t=1.

5.2 Prediction error method
The prediction error method (PEM) [13] is a method of identifying the unknown param-
eters θ in the model (4). The parameter estimates are found by minimizing a criterion
function of the prediction error with respect to θ . The prediction error is defined as the
difference between the output of the true system and the output predicted by the model.
Based on the model structure (4), the predicted output of the system is

ŷ(t|θ) = H−1(q,θ)G(q,θ)u(t)+
[
I −H−1(q,θ)

]
y(t).

Consequently, the prediction error becomes

ε(t,θ) = y(t)− ŷ(t|θ) = H−1(q,θ) [y(t)−G(q,θ)u(t)] .

14

5.2 Prediction error method MOOSE

The criterion function to be minimized is denoted VN(θ ,ZN). The estimates are defined
as

θ̂N = arg min
θ

VN(θ ,ZN). (5)

In MOOSE the criterion function is set to the quadratic criterion. That is,

VN(θ ,ZN) =
1

2N

N

∑
t=1

ε(t,θ)T Λε(t,θ). (6)

It holds under mild conditions that the estimated parameters converge to the true
values with probability one as the number of observations tends to infinity [13]. We
also have, under the same conditions, that the sequence of random variables

N(θ̂N −θ 0)TV ′′
N (θ 0,ZN)(θ̂N −θ 0)

converges in distribution to the χ2 distribution with n degrees of freedom [13]. Thus,
for a sufficiently large N, the estimates θ̂N are with a probability α contained inside the
ellipsoid

ESI =

{
θ | (θ −θ 0)TV ′′

N (θ 0,ZN)(θ −θ 0)≤ χ2
α(n)
N

}
, (7)

where χ2
α(n) is the α-percentile of the χ2 distribution with n degrees of freedom. We

call ESI the system identification set.
The Hessian of the quadratic criterion function in (6) is

V ′′
N (θ 0,ZN) =

1
N

N

∑
t=1

ŷ′(t|θ 0)Λ−1ŷ′(t|θ 0)T . (8)

We can rewrite expression (8) in the frequency domain using Parseval’s relation. We
get different expressions depending on if we perform open or closed loop identification.
Open loop identification is when there is no feedback control of the system during the
identification experiment. Closed loop identification is when there is feedback control.
MOOSE only handles open loop identification. Thus, we have

V ′′
N (θ 0,ZN) =

1
2π

∫ π

−π
Γu(eiω),θ)(Λ−1 ⊗Φu(eiω))ΓT

u (e
−iω),θ)dω+

1
2π

∫ π

−π
Γe(eiω),θ)(Λ−1 ⊗Λ(eiω))ΓT

e (e
−iω),θ)dω ,

(9a)

where

Γu =

vec[F1
u]

...
vec[Fn

u]

 , Γe =

vec[F1
e]

...
vec[Fn

e]

 , (9b)

F i
u = H−1 dG(θ)

dθi
, F i

e = H−1 dH(θ)
dθi

, for all i = 1 . . .n. (9c)

Here θi denotes the i:th component of the vector θ . Furthermore, vec[X] denotes a row
vector which contains the rows of the matrix X stacked adjacent to each other. For

15

5.3 Spectrum of input signal MOOSE

details, see [2]. From expression (9), we can see that the Hessian is an affine function
of the input spectrum ϕu(ω). Thus, we can directly affect the shape of the system
identification set and, consequently, the estimates by designing a particular spectrum
of the input signal.

The system identification set in (7) can be expressed using the Fisher information
matrix instead of the Hessian. The information matrix is defined as

IF =
1
N

N

∑
t=1

ŷ′(t|θ 0)Λŷ′(t|θ 0)T , (10)

[13]. Thus, we can write

ESI =

{
θ | (θ −θ 0)TIF(θ 0)(θ −θ 0)≤ χ2

α(n)
N

}
.

PEM can also be used with state space formulations of the system and model. For
details, see [11].

5.3 Spectrum of input signal
We saw in the previous section that the spectrum of the input signal used in the identi-
fication experiment affect the estimates. Thus, input design can be performed in terms
of its frequency characteristics by choosing the spectrum of the signal. The spectral
density of a stationary signal u(t) can be written as

Φu(ω) =
∞

∑
k=−∞

ckBk(eiω), (11)

where the scalar basis functions {Bk(eiω)}∞
k=0 are proper, stable, and rational such

that B−k(eiω) = Bk(e−iω) and the real coefficients c−k = ck. MOOSE only handles
spectrum that are shaped as an FIR filter. That is, the basis functions are exponentials,
Bk(eiω) = e−iωk. Consequently, the coefficients become the autocorrelation sequence
of the input signal. That is, ck = E{u(t)u(t − k)}. See for example [14].

Some optimal input design problems can be formulated as convex optimization
problems with decision variables ck. The design is then a matter of finding the co-
efficients ck. There are two main difficulties with choosing them. First, the spectral
density of a stationary process is a non-negative entity. Therefore, the coefficients
must be chosen such that

Φu(ω)⪰ 0, for all ω, (12)

for (11) to define a spectral density. Second, the constraint (12) is infinite dimensional
making it computationally impractical to work with. To simplify the problem, we
consider the partial expansion

Φu(ω) =
m−1

∑
k=−(m−1)

ckBk(eiω). (13)

Hence, only the first m coefficients of (11) are used to define the spectrum. Two ap-
proaches for choosing the coefficients ck are partial correlation parameterization [10]
and finite dimensional parameterization. MOOSE uses the latter approach.

16

5.4 Input generation MOOSE

5.3.1 Finite dimensional parameterization

Finite dimensional parameterization requires that {ck}m−1
k=0 is chosen such that (13) is a

spectrum. It means that condition (12) must hold for the truncated sum (13). This can
be achieved in various ways, the most frequently used technique is an application of
the positive real lemma which springs from the Kalman-Yakubovich-Popov lemma.

Lemma 1: If {A, B, C, D} is a controllable state-space realization of Φ+
u (ω) =

∑m−1
k=0 ckBk(eiω). Then there exists a matrix Q = QT such that

K(Q,{A,B,C,D})≜
[

Q−AT QA −AT QB
−BT QA −BT QB

]
+

[
0 CT

C D+DT

]
⪰ 0, (14)

if and only if Φu(ω) = ∑m−1
k=−(m−1) ckBk(eiω)≥ 0, for all ω.

Thus, the necessary and sufficient condition for (12) to hold for the truncated se-
quence is the matrix inequality (14), assuming a matrix Q exists. The matrix inequality
becomes a linear matrix inequality (LMI) in ck and Q if the only matrices that are
linearly dependent on the coefficients ck are C and D.

5.4 Input generation
When the input spectrum is found, a corresponding time realization of the signal has
to be generated. The realization is then used to excite the system in the identification
experiment. One possible input generation is to let the input signal be white Gaussian
noise filtered through a transfer function matrix. The matrix is chosen such that the
obtained signal has the required spectrum. The matrix design is a problem of minimum
phase spectral factorization, as such, it has many known solutions, see for example [14].
MOOSE do not provide tools for input generation.

5.5 Application set
The input signal needs to be designed with the intended application of the model in
mind. To enable this, a measure of how well the model performs is defined. The degra-
dation in performance due to a mismatch between the model and the system is specified
by an application cost function. The cost emphasizes an important performance quality
of the system. Examples of such qualities are the sensitivity function and the closed
loop output response. The cost function is denoted Vapp(θ). The minimal value of
Vapp is equal to zero and is achieved when the true parameters are used in the func-
tion. These conditions are equivalent to the constraints Vapp(θ 0) = 0, V ′

app(θ 0) = 0
and V ′′

app(θ 0)⪰ 0.
An increased value of the application cost reflects an increased degradation in per-

formance. The maximal allowed degradation is defined by

Vapp(θ)≤
1
γ
, (15)

where γ is a positive scalar. The parameters fulfilling inequality (15) are called accept-
able parameters and they belong to the application set. The set is defined as

Θapp(γ) =
{

θ |Vapp(θ)≤
1
γ

}
.

The concept of using application sets comes from [9] and [3].

17

5.6 Optimal input design problem MOOSE

5.6 Optimal input design problem
We want the estimated parameters to give a model with acceptable performance. Thus,
one part of the objective of optimal input design is to guarantee, with high probability,
that the estimated parameters are acceptable parameters. This condition is equivalent
to requiring that ESI(α)⊆ Θapp(γ), for specific values of α and γ . The second part of
the objective is to minimize the cost related to performing the experiment. To simplify
the minimization greatly, the cost is chosen as a convex function with respect to the
coefficients in the spectral density function of the input signal. For example c0 =
E
{

u(t)T u(t)
}

, the power of the input signal.
Let fcost denote the cost related to the experiment. The complete objective of opti-

mal input design can then be stated as the optimization problem

minimize
ck

fcost(ck), (16a)

subject to ESI(α)⊆ Θapp(γ), (16b)
Φu(ω)≥ 0, for all ω. (16c)

The optimization problem (16) can be approximated by a convex formulation. The
benefit is that a convex optimization problem can be solved accurately and efficiently
[4]. The objective function (16a) is convex. The second constraint (16c) can be re-
placed by an LMI using finite dimensional parametrization. The first constraint (16b)
needs to be relaxed into a convex constraint. Two methods of doing this are the scenario
approach and the ellipsoidal approximation. MOOSE supports both methods.

5.6.1 Scenario approach

The requirement that the system identification set lies inside the application set is re-
laxed. It is enough that a finite number of the estimated parameters are contained inside
Θapp. These parameters are chosen from ESI according to a given probability distribu-
tion. It is shown in [5] that if

(θi −θ 0)TIF(θi −θ 0)≥ χ2
α(n)γ

N
Vapp(θi) for i = 1 . . .M < ∞,

where θi ∈ ESI , then ESI lies inside Θapp with a high probability. Thus, optimization
problem (16) can be approximated as

minimize
ck

fcost(ck), (17a)

subject to (θi −θ 0)TIF(θi −θ 0)≥ χ2
α(n)γ

N
Vapp(θi), i = 1 . . .M, (17b)

K(Q,{A,B,C,D})⪰ 0. (17c)

Here we use finite dimensional parametrization on the second constraint (16c). Formu-
lation (17) is a convex optimization problem.

5.6.2 Ellipsoidal approximation

The application cost is approximated by its second order Taylor expansion centered
around the true parameters. The corresponding application set becomes an ellipsoidal
region. Thus, Θapp ≈ Eapp for θ close to θ 0, where

Eapp(γ) = {θ | (θ −θ 0)TV ′′
app(θ 0)(θ −θ 0)≤ 1/γ}. (18)

18

5.7 Performing system identification experiments MOOSE

It is shown in [9] that ESI lies inside Eapp if and only if IF ⪰ χ2
α(n)γV ′′

app(θ 0)/N. Thus,
optimization problem (16) can be approximated as

minimize
ck

fcost(ck), (19a)

subject to IF ⪰ χ2
α(n)γV ′′

app(θ 0)/N, (19b)

K(Q,{A,B,C,D})⪰ 0. (19c)

Here we also use finite dimensional parametrization. Formulation (19) is a convex
optimization problem.

5.7 Performing system identification experiments
There is a conflict within optimal input design. The method requires knowledge of the
true parameters. However, if these values were known, we would have no reason to
construct an identification experiment. To get around the conflict, an initial estimate of
the parameters is used instead of the true values. The estimate can be obtained through,
for example, an identification experiment or physical insight of the process. A method
based on this maneuver is described by the input design algorithm (IDA) in Table 1.

Table 1: Input design algorithm
Step Action
Step 0 Find an initial estimate of the model parameters.
Step 1 Find the application cost based on simulations of the model with

the parameter estimates.
Step 2 Design the optimal input signal based on the application cost and

parameter estimates.
Step 3 Find a new estimate of the model parameters using the optimal

input signal in the system identification experiment.

IDA can be iterated so that, after implementing the method once, the initial esti-
mates in Step 0 is set to the obtained estimates in Step 3. As more and more data are
used in the identification step and if there exist parameters θ 0 such that S = M (θ 0),
the estimate converges to the true values. Therefore, we expect the input design based
on an initial estimate to converge to the design based on the true values. A discussion
on this and a formal proof for autoregressive systems with exogenous inputs are found
in [7].

5.7.1 Approximate application cost

It is unlikely that we can evaluate the application cost using outputs from the real pro-
cess. Such an evaluation requires running the process based on models with more or
less arbitrary parameter values. Instead we can perform the evaluation in simulation.
For this purpose, we introduce the approximative application cost Ṽapp(θ). The ap-
proximation is evaluated using outputs from a linear model of the process where the
parameters of the model are set to an initial estimate. To obtain an optimal input design
using the approximate application cost, Vapp(θ) is replaced by Ṽapp(θ) in the relevant
expressions. For a detailed description of this procedure, see [12].

19

REFERENCES MOOSE

References
[1] A.C. Atkinson and A.N. Doner. Optimum experiment design. Clarendon Press,

Oxford, 1992.

[2] M. Barenthin Syberg. Complexity Issues, Validation and Input Design for Con-
trol in System Identification. PhD thesis, Royal Institute of Technology (KTH),
December 2008. TRITA-EE 2008:055.

[3] X. Bombois, G. Scorletti, M. Gevers, P. M. J. V. D. Hof, and R. Hildebrand. Least
costly identification experiment for control. Automatica, 42:1651–1662, 2006.

[4] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, 2003.

[5] G C Calafiore and M C Campi. The Scenario Approach to Robust Control Design.
IEEE Transactions on Automatic Control, 51(5):742–753, May 2006.

[6] J. D’Errico. Adaptive robust numerical differentiation.
http://www.mathworks.com/matlabcentral/fileexchange/13490-adaptive-robust-
numerical-differentiation, June 2011.

[7] L. Gerencsér, H. Hjalmarsson, and J. Mårtensson. Identification of ARX systems
with non-stationary inputs - asymptotic analysis with application to adaptive input
design. Automatica, 45(3):623–633, March 2009.

[8] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex program-
ming, version 1.21. http://cvxr.com/cvx, April 2011.

[9] H. Hjalmarsson. System identification of complex and structured systems. In Eu-
ropean Control Conference, pages 3424–3452, Budapest, Hungary, 2009. Plenary
address.

[10] H. Jansson and H. Hjalmarsson. Input Design via LMIs Admitting Frequency-
wise Model Specifications in Confidence Regions. IEEE Transactions on Auto-
matic Control, 50(10):1534–1549, 2005.

[11] C. A. Larsson. Toward applications oriented optimal input design with focus on
model predictive control. Technical report, KTH Royal Institute of Technology,
September 2011. Licentiate Thesis.

[12] C. A. Larsson, M. Annergren, and H. Hjalmarsson. On Optimal Input Design
for Model Predictive Control. In Proceedings IEEE Conference on Decision and
Control, December 2011.

[13] L. Ljung. System Identification: Theory for the User. Prentice Hall, Upper Saddle
River, New Jersey, 2nd edition, 1999.

[14] T. Söderström. Discrete-Time Stochastic Systems: Estimation and Control.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2002.

20

