Todays material is from [Ma]¹

1.1. **Derivations.** Let A be a ring, and M an A-module. A derivation d is a map of sets $d: A \longrightarrow M$ such that

$$d(x+y) = d(x) + d(y) \quad \text{and} \quad d(xy) = xd(y) + yd(x),$$

for all x, y in A. The set of derivations is denoted Der(A, M), and is in a natural way an A-module.

Note that for any derivation $d: A \longrightarrow M$ we have that d(1) = d(1) + d(1). Thus for any integer $n \in \mathbf{Z}$ we have that d(n) = 0.

If $a: k \longrightarrow A$ is a homomorphism of rings then a derivation $d: A \longrightarrow M$ is called k-linear if $d \circ a = 0$. The set of k-linear derivations is denoted $\operatorname{Der}_k(A, M)$. In particular we have that $\operatorname{Der}_{\mathbf{Z}}(A, M) = \operatorname{Der}(A, M)$.

1.2. **Liftings.** In the category of k-algebras, consider the following diagram

$$(1.2.1) D \xrightarrow{f} E$$

A ring homomorphism $\gamma \colon A \longrightarrow D$ such that $f \circ \gamma = g$ is called a *lift* of g.

Lemma 1.3. Consider the situation as above 1.2.1. Assume that $I = \ker(f)$ is such that $I^2 = 0$. Then we have that

- (1) We have a that I is an A-module.
- (2) For any two liftings γ_1 and γ_2 of g, the map $d = \gamma_2 \gamma_1$ is a k-linear derivation $A \longrightarrow I$.
- (3) If $d \in \operatorname{Der}_k(A, I)$, and γ a lift of g, then $\gamma + d \colon A \longrightarrow D$ is a lift of g.

Proof. Check this. \Box

1.4. **Kähler differentials.** Let I denote the kernel of the multiplication map $A \otimes_k A \longrightarrow A$, and let $\Omega_{A/k} = I/I^2$. Then we have the exact sequence of $A \otimes_k A$ -modules

$$0 \longrightarrow \Omega_{A/k} \longrightarrow A \otimes_k A/I^2 \xrightarrow{\mu} A \longrightarrow 0.$$

We have two natural sections $\gamma_i \colon A \longrightarrow A \otimes_k A$ of μ , where i = 1, 2. Namely, $\gamma_1(x) = x \otimes 1$ and $\gamma_2(x) = 1 \otimes x$. By Lemma 1.3 we have that $\Omega_{A/k}$ is an A-module, and that $d = \gamma_2 - \gamma_1$ is a derivation $d \in \operatorname{Der}_k(A, \Omega_{A/k})$.

¹Hideyuki Matsumura, Commuative ring theory. Cambridge studies in advanced mathematics 8.

Lemma 1.5. The A-module $\Omega_{A/k}$ is generated by d(y), with $y \in A$.

Proof. Note that for any elements $x \otimes y \in A \otimes_k A$ we have that

$$x \otimes y = (x \otimes 1)(1 \otimes y - y \otimes 1) + xy \otimes 1.$$

Thus any element in the quotient $A \otimes_A / I^2$ is of the form $(x \otimes 1)d(y)$, from where the lemma follows.

We also observe that if $\varphi \colon M \longrightarrow N$ is an A-module homomorphism, and $D \in Der_k(A, M)$ a derivation. Then the composition $\varphi \circ d$ is a k-linear derivation from $A \longrightarrow N$. It follows that $Der_k(A, -)$ is a covariant functor from the category of A-modules to sets. If M is a given A-module, and $D \in Der_k(A, M)$ a derivation, then we get an induced map of functors

$$D_* : \operatorname{Hom}_A(M, -) \longrightarrow \operatorname{Der}_k(A, -),$$

by composition. If that functor is a bijection of sets, for any A-module N, then we say that the pair (M, D) represents the functor. Such representing pairs are unique (up to unique isomorphism).

Proposition 1.6. The functor $Der_k(A, -)$ is represented by the pair $(\Omega_{A/k}, d)$.

Proof. We need to show that the induced map of functors

$$d_* : \operatorname{Hom}_A(\Omega_{A/k}, -) \longrightarrow \operatorname{Der}_k(A, -),$$

is an isomorphism. Injectivity follows readily from Lemma 1.5. We will show surjectivity. Let $D \in \operatorname{Der}_k(A, M)$ be a derivation, where M is some A-module. We define the ring A * M by putting following ring structure on the A-module $A \oplus M$:

$$(x,m)*(y,n):=(xy,xn+ym).$$

This is well-defined, and note that we have $M^2 = 0$. Consider the map $\varphi_1 \colon A \longrightarrow A * M$ that sends any element $x \mapsto (x, D(x))$. This is well-defined, and we have clearly that $\varphi_1(x+y) = \varphi_1(x) + \varphi_1(y)$, and

$$\varphi_1(x)\varphi_1(y) = (x, D(x))*(y, D(y)) = (xy, xD(y)+yD(x)) = (xy, D(xy)).$$

Hence² the map φ_1 is a homomorphism of rings. It is also an k-algebra homomorphism. We then have the k-algebra homomorphism

$$\Phi = (\varphi_1, \varphi_2) \colon A \otimes_k A \longrightarrow A * M.$$

We then restrict our map Φ to the $A \otimes_k A$ -module $I \subseteq A \otimes_k A$. If $x = \sum x_i \otimes y_i$ is an element of I then $\Phi(x) = (0, D(x))$, and consequently the restriction map is a map of $A \otimes_k A$ -modules $\Phi: I \longrightarrow M$. Since $M^2 = 0$, we get an induced A-linear map

$$\varphi \colon \Omega_{A/k} = I/I^2 \longrightarrow M.$$

²Here I disagree with [Ma]

That is an element $\varphi \in \operatorname{Hom}_A(\Omega_{A/k}, M)$. When we compose this A-module map φ with the derivation d we get

$$\varphi \circ d(x) = \varphi(1 \otimes x - x \otimes 1) = 1 \cdot D(x) - x \cdot D(1) = D(x).$$

Thus $D = \varphi \circ d$, and the map in question is surjective.

Lemma 1.7. If $A = k[x_1, ..., x_n]$ is the polynomial ring, then

$$\Omega_{A/k} = \bigoplus_{i=1}^n Ad(x_i)$$

is the free A-module with basis $d(x_1), \ldots, d(x_n)$.

Proof. Let x_1, \ldots, x_n be elements in the ring A, and consider a polynomial expression $f(x_1, \ldots, x_n)$ in the elements x_1, \ldots, x_n . Using the definition of derivations we get that

$$d(f) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} d(x_i).$$

Therefore it follows by Lemma 1.5 that if A is generated by x_1, \ldots, x_n as a k-algebra, then $\Omega_{A/k}$ is generated by $d(x_1), \ldots, d(x_n)$ as an A-module. In the polynomial ring situation we have the derivations $D_i \in \operatorname{Der}_k(A, A)$ where $D_i(x_j) = \delta_{i,j}$. It then follows that $\operatorname{Hom}_A(\Omega_{A/k}, A)$ is a free module of rank n, from where we get that $\Omega_{A/k}$ had to be free of rank n.

Theorem 1.8. If $g: A \longrightarrow B$ is a k-algebra homomorphism, then we have the exact sequence of B-modules

$$\Omega_{A/k} \otimes_A B \xrightarrow{\alpha} \Omega_{B/k} \xrightarrow{\beta} \Omega_{B/A} \longrightarrow 0,$$

where $\alpha(d(x) \otimes y) = y \cdot d(g(x))$, and $\beta(d(y)) = d(y)$.

Proof. One proves this by looking at the dual sequence, for arbitrary M. We then get the sequence

$$0 \longrightarrow \operatorname{Der}_A(B, M) \longrightarrow \operatorname{Der}_k(B, N) \longrightarrow \operatorname{Hom}_B(\Omega_{A/k} \otimes_A B, N).$$

We identify $\operatorname{Hom}_B(\Omega_{A/k} \otimes_A B, N) = \operatorname{Holm}_A(\Omega_{A/k}, N) = \operatorname{Der}_k(A, N)$. The exactness of the dual sequence is the readily checked, and then the exactness of the sequence follows.

Theorem 1.9. If $g: A \longrightarrow B$ is a surjective k-algebra homomorphism, with kernel \mathfrak{m} , then we have the exact sequence of B-modules

$$\mathfrak{m}/\mathfrak{m}^2 \xrightarrow{\delta} \Omega_{A/k} \otimes_A B \xrightarrow{\alpha} \Omega_{B/k} \longrightarrow 0,$$

where $\delta(x) = d(x) \otimes 1$.

Proof. This is also proved easily by looking at the dual sequence, for arbitrary B-module M.

Example 1.10. Let $B = k[x, y]/(x^2 + y^2)$, and set A = k[x, y]. We then have that $\Omega_{B/k}$ is the *B*-module

$$Bd(x) \oplus Bd(y)/(2xd(x) + 2yd(y)).$$

Lemma 1.11. Let $S \subseteq A$ be a multiplicatively closed subset. Then we have an canonical identification

$$(\Omega_{A/k} \otimes 1, d_A \otimes 1) = (\Omega_{S^{-1}A/k}, d_{S^{-1}A}).$$

.

Proof. It suffices to show that the pair $(\Omega_{A/k} \otimes 1, d_A \otimes 1)$ satisfies the same universal properties as $(\Omega_{S^{-1}A/k}, d_{S^{-1}A})$. For any $S^{-1}A$ -module M, we have the identification

$$\operatorname{Hom}_{S^{-1}A}(\Omega_{A/k} \otimes S^{-1}A, M) = \operatorname{Hom}_A(\Omega_{A/k}, M).$$

Then the result follows.

1.12. Sheaves of Kähler differentials. Let $f: X \longrightarrow Y$ be a separated map³ of schemes. Then $\Delta: X \longrightarrow X \times_Y X$ is a closed immersion, and we have that $\Delta(X)$ is a closed subscheme of $X \times_Y X$. Let \mathscr{I} be the quasi-coherent ideal sheaf defining $\Delta(X)$. Then $\mathscr{I}/\mathscr{I}^2$ is a quasi-coherent sheaf of $\mathscr{O}_{\Delta(X)}$ -modules (check this). We define the quasi-coherent sheaf $\Omega_{X/Y}$ on X, as the sheaf

$$\Omega_{X/Y} := \Delta^*(\mathscr{I}/\mathscr{I}^2).$$

If X and Y are Noetherian, and $f: X \longrightarrow Y$ we have that $\Omega_{X/Y}$ is a coherent sheaf.

DEPARTMENT OF MATHEMATICS, KTH, STOCKHOLM, SWEDEN *E-mail address*: skjelnes@kth.se

³Separatedness is not needed, but simplifies a bit.