1. Lecture 11, April 17

Definition 1.1. Let X = Proj(S), and \mathscr{F} a sheaf of \mathscr{O}_X -modules. Then the graded group

$$\Gamma_*(\mathscr{F}) = \bigoplus_{n \in \mathbf{Z}} \Gamma(X, \mathscr{F}(n)),$$

is called the associated S-module. The S-module structure is as follows. Any homogeneous $x \in S_d$ determines a global section $x \in \Gamma(X, \mathscr{O}_X(d))$. The isomorphism $\mathscr{F}(n) \otimes_{\mathscr{O}_X} \mathscr{O}_X(d) = \mathscr{F}(n+d)$ determines a map

$$\Gamma(X, \mathscr{O}_X(d)) \otimes_{\Gamma(X, \mathscr{O}_X)} \Gamma(X, \mathscr{F}(n)) \longrightarrow \Gamma(X, \mathscr{F}(n+d)),$$

which also describes the S-module structure $x \otimes s \mapsto xs$.

Lemma 1.2. Let X be a quasi-compact scheme, \mathscr{L} an invertible sheaf, and \mathscr{F} a quasi-coherent sheaf. Assume that $f \in \Gamma(X, \mathscr{L})$ is a global section, and let $U_f \subseteq X$ be the open set $\{x \in X \mid f_x \text{ not in } \mathfrak{m}_x \mathscr{L}_x\}$.

- (1) If $s \in \Gamma(X, \mathscr{F})$ is a global section such that the restriction $s_{|U_f} = 0$, then there exists an integer n such that the global section $f^n \otimes s \in \Gamma(X, \mathscr{L}^{\otimes n} \otimes \mathscr{F})$ is the zero section.
- (2) Assume that the intersection of any two open affines in X, is quasi-compact, and let $t \in \Gamma(U_f, \mathscr{F})$. Then there exists a integer n such that $f^n \otimes t \in \Gamma(U_f, \mathscr{L}^{\otimes n} \otimes \mathscr{F})$ extends to a global section of $\mathscr{L}^{\otimes n} \otimes \mathscr{F}$.

Proposition 1.3. Let S be a graded ring, finitely generated by S_1 as a S_0 -algebra. Let \mathscr{F} be a quasi-coherent sheaf on $X = \operatorname{Proj}(S)$. Then there is a natural isomorphism

$$\beta \colon \widetilde{\Gamma_*(\mathscr{F})} \longrightarrow \mathscr{F}.$$

Proof. We define the map of sheaves β by giving a natural map over basic opens $D_+(f) \subseteq X$. By definition, the sections of $\Gamma_*(\mathscr{F})$ are elements of the form $s = m \otimes a/f^n = am \otimes 1/f^n$, where $\deg(a) + \deg(m) = n \deg(f)$, and where $am \in \Gamma(X, \mathscr{F}(d))$ is a global section with $d = n \deg(f)$. The element $1/f^n$ is a section of $\mathscr{O}_X(-d)$ over the basic open $D_+(f)$. By Proposition ?? (ii) we have that $\mathscr{F}(d) \otimes_{\mathscr{O}_X} \mathscr{F}(-d) = \mathscr{F}$. In particular this identity holds locally over $D_+(f)$. The two sections am and $1/f^n$ naturally give a section $am \otimes 1/f^n$ of \mathscr{F} over $D_+(f)$. This determines the map of sheaves $\beta \colon \Gamma_*(\mathscr{F}) \longrightarrow \mathscr{F}$.

We need to show that β is an isomorphism, and this we establish locally. Let $U = D_+(f)$ be a basic open. We consider $f \in \Gamma(X, \mathscr{O}_X(d))$, a global section of $\mathscr{O}_X(d)$ with $d = \deg(f)$. With the notation of Lemma 1.2 we have that $U_f = D_+(f)$. Furthermore, we have $\mathscr{F}(U) = M$, for some $S_{(f)}$ -module M. Let $s \in \Gamma_*(\mathscr{F})(U)$ be an element that is mapped to zero by β . Then s is a sum of elements of the form $m \otimes 1/f^p$, where $m \in \Gamma(X, \mathscr{F}(n))$ is a global section, and where $n = p \deg(f)$.

By construction $\beta(s) = m/f^p = 0$, as a section of $\Gamma(U, \mathscr{F}) = M$. By Lemma 1.2 we have that the global section $f^n \otimes s \in \Gamma(X, \mathscr{F}(d))$, where $d = \deg(s) + n \deg(f)$, for some n, is the zero section. But then we have that

$$s = m \otimes \frac{1}{f^p} = f^n m \otimes \frac{1}{f^{p+n}} = 0,$$

and we have shown injectivity.

To show surjectivity, let $m \in M = \mathscr{F}(U)$. By Lemma 1.2 we know that $m \otimes f^n \in \mathscr{F}_{|U}(d)$ comes from a global sections $s' \in \Gamma(X, \mathscr{F}(d))$, for some integer n.

1.4. It is however important to note that two different graded S-modules M and N can give the same sheaf $\tilde{M} = \tilde{N}$.

Definition 1.5. Let $f: X \longrightarrow \operatorname{Spec}(A)$ be a morphism of schemes, and let \mathscr{L} be an invertible sheaf on X (that is quasi-coherent \mathscr{O}_X -module that is locally free of rank 1). The sheaf \mathscr{L} is *very ample* (relative to f) if there exists an immersion

$$i: X \longrightarrow \mathbf{P}_{A}^{n}$$

to some projective n-space over A, such that $i^*\mathcal{O}(1) = \mathcal{L}$. A morphism of schemes $i\colon X\longrightarrow Z$ is an immersion if it is an open immersion into a closed subscheme. Thus X is an open subscheme of W, where W is closed in Z.

Example 1.6. We have seen () that a closed subscheme $i: X \subseteq \mathbf{P}_A^n$ is given by a homogeneous ideal $I \subseteq A[x_0, \ldots, x_n]$. So, $X = \text{Proj}(A[x_0, \ldots, x_n]/I)$. We then have the sheaf $\mathcal{O}_X(1)$ on X, and we have the sheaf $\mathcal{O}(1)$ on \mathbf{P}_A^n . Then we also have that

$$\mathscr{O}_X(1) = i^* \mathscr{O}(1).$$

So, $\mathcal{O}_X(1)$ is very ample.

Definition 1.7. A sheaf \mathscr{F} on a scheme X is generated by global sections if there exists global sections $\{s_i \in \Gamma(X,\mathscr{F})\}_{i \in \mathscr{I}}$ such that, for all points $x \in X$, the images of the sections s_i in the stalk \mathscr{F}_x , generate the stalk as an $\mathscr{O}_{X,x}$ -module.

1.8. Note a global section $s \in \Gamma(X, \mathscr{F})$ of a sheaf \mathscr{F} is equivalent with a map of sheaves $\mathscr{O}_X \longrightarrow \mathscr{F}$. The identity element is a global section, and sending 1 to s determines both a map and a global section of \mathscr{F} . Thus, a collection of global sections is equivalent with a map

$$\bigoplus_{i\in\mathscr{I}}\mathscr{O}_X\longrightarrow\mathscr{F}.$$

That the sheaf \mathscr{F} is generated by gloabal sections, means that there exists a map as above, which is surjective as a map of sheaves.

Example 1.9. Let $X = \mathbf{P}_A^n$. From Proposition ?? we have that the sheaf $\mathscr{O}_X(-1)$ has no global sections. Since the sheaf $\mathscr{O}_X(-1)$ is nonzero, it follows that it can not be generated by global sections. The Proposition ?? gives that the A-module generated by x_0, \ldots, x_n , the linear forms of the polynomial ring $A[x_0, \ldots, x_n]$ are the global sections of $\mathscr{O}_X(1)$. We know furthermore, that locally, when restricted to $U_i = D(x_i)$ we have that the sheaf $\mathscr{O}_X(1)_{U_i}$ is free of rank 1, and a basis for the sheaf is $x_{i|U_i}$. In other words, the map of sheaves

$$\bigoplus_{i=0}^n \mathscr{O}_X \longrightarrow \mathscr{O}_X(1)$$

is surjective.

Theorem 1.10 (Serre). Let $X \subseteq \mathbf{P}_A^n$ be a closed subscheme, with A a Noetherian ring. Let $\mathcal{O}_X(1) = i^*\mathcal{O}(1)$. For any coherent sheaf on X, there exists an integer n_0 such that for any $n \geq n_0$ the sheaf $\mathscr{F}(n)$ is generated by a finite set of global sections.

Proof. Let $U_i = D_+(x_i)$ form the opens that gives us the standard open covering of X, with $i = 0, \ldots, n$. By assumption \mathscr{F} is coherent, so $\mathscr{F}_{|U_i} = \tilde{M}_i$, for some finitely generated $A_i = \Gamma(U_i, \mathscr{O}_X)$ -module M_i . Let $s_{i,1}, \ldots, s_{i,p_i}$ be elements of M_i that generate it as an A_i -module. Then there exist some N such that $x_i^N s_{i,j}$ is a global section of $\Gamma(X, \mathscr{F}(N))$. The integer N can be chosen such that it works for all $i = 0, \ldots, n$ as well. But then we have our map of sheaves

$$\oplus \mathscr{O}_X \longrightarrow \mathscr{F}(N)$$

that locally, over U_i will hit the elements $x_i^N s_{i,j}$ with $j = 1, \ldots, p$. \square

Corollary 1.11. Let $X \subseteq \mathbf{P}_A^n$ as above. Any coherent sheaf \mathscr{F} on X can be written as a quotient

$$\bigoplus_{i=1}^p \mathscr{O}_X(n_i) \longrightarrow \mathscr{F},$$

for some integers n_1, \ldots, n_p . That is, \mathscr{F} is a quotient of a sum of invertible sheaves.

Theorem 1.12. Let k be a field, and let A be a finitely generated k-algebra. Let $X \subseteq \mathbf{P}_A^n$ be a projective scheme, and let \mathscr{F} be a coherent \mathscr{O}_X -module. Then $\Gamma(X,\mathscr{F})$ is a finitely generated A-module.

Proof. See book of Hartshorne.

Corollary 1.13. Let $X \subseteq \mathbf{P}_Y^n$ be a closed subscheme, where Y is a scheme of finite type over a field. Let $f: X \longrightarrow Y$ be the projection map, and let \mathscr{F} be a coherent sheaf on X. Then $f_*\mathscr{F}$ is coherent.

Proof. Can assume $Y = \operatorname{Spec}(A)$. Then $f_*\mathscr{F}$ is the sheafification of the A-module $\Gamma(Y, f_*\mathscr{F}) = \Gamma(X, \mathscr{F})$, which is finitely generated by the theorem.