1. Lecture 13, May 08

1.1. Cartier divisors. Let X be a scheme, for any open affine $U = \operatorname{Spec}(A)$, we let K(U) denote the total fraction ring of A. Then K(-) form a presheaf on the basis for the topology on X, and we let \mathscr{K}_X denote its associated sheaf. See the article by Kleiman $[Kl]^1$.

We let \mathscr{K}_X^* denote the subsheaf of \mathscr{K}_X consisting of invertible elements. We have that \mathscr{O}_X^* is a subsheaf of \mathscr{K}_X^* . We will in the sequel consider these sheaves as sheaves of abelian groups, that is with respect to their multiplicative structures.

Definition 1.2. A Cartier divisor on X is a global section of the sheaf quotient $\mathscr{K}_X^*/\mathscr{O}_X^*$.

Recall that the sheaf quotient is the sheaf associated to the presheaf quotient. A Cartier divisor D is given by an open cover $\{U_i\}$ of X, and elements $f_i \in \Gamma(U_i, \mathscr{K}_X^*)$, such that $f_i/f_j \in \Gamma(U_i \cap U_j, \mathscr{K}_X^*)$ for all i, j. By possibly shrinking the open U_i , we can assume that the f_i are elements of the presheaf K(-).

From the exact sequence of sheaves

$$0 \longrightarrow \mathscr{O}_X^* \longrightarrow \mathscr{K}_X^* \longrightarrow \mathscr{K}_X^*/\mathscr{O}_X^* \longrightarrow 0,$$

we get the induced map of global sections $\Gamma(X, \mathscr{K}_X^*) \longrightarrow \Gamma(X, \mathscr{K}_X^*/\mathscr{O}_X^*)$. The image of this map are called *principal* Cartier divisors, and the cokernel is denoted by $\operatorname{CaCl}(X)$. Two Cartier divisors D and E are said to be linearly equivalent if they have the same image in $\operatorname{CaCl}(X)$.

Proposition 1.3. Let X be an integral, separated, Noetherian scheme that is locally factorial (each stalk $\mathcal{O}_{X,x}$ is a UFD). Then we have an isomorphism of groups

$$\mathrm{Div}(X) = \Gamma(X, \mathscr{K}_X^*/\mathscr{O}_X^*).$$

Moreover, the principal Weil divisors correspond under this isomorphism to principal Cartier divisors. Hence we also have an isomorphism of groups Cl(X) = CaCl(X).

Proof. As in [Ha], Proposition 6.11.

1.4. Invertible sheaves.

Proposition 1.5. Let X be a scheme, and let \mathcal{L} and \mathcal{M} be invertible sheaves on X. Then we have

- (1) The sheaf $\mathcal{L} \otimes_{\mathscr{O}_X} \mathscr{M}$ is invertible.
- (2) The sheaf $\mathscr{H}om(\mathscr{L}, \mathscr{O}_X)$ is invertible.
- (3) We have an isomorphism $\mathscr{H}om(\mathscr{L}, \mathscr{O}_X) \otimes_{\mathscr{O}_X} \mathscr{L} = \mathscr{O}_X$.

Proof. Exercise/Clear.

¹Steve Kleiman "Misconceptions about K_X "

We have that the set of equivalence classes of invertible sheaves on a scheme X form an Abelian group under tensor product. This group is called the Picard group $\operatorname{Pic}(X)$ of X. The identity element is \mathscr{O}_X , and the dual of an invertible sheaf \mathscr{L} is its inverse. We write $\mathscr{L}^{-1} := \mathscr{H}om(\mathscr{L}, \mathscr{O}_X)$.

Let D be a Cartier divisor on X, given by $\{U_i, f_i\}$. Then we form the \mathscr{O}_X -submodule $\mathscr{L}(D)$ of \mathscr{K}_X^* , that is generated, locally over U_i by f_i^{-1} . One checks that this is indeed well-defined, and independent of the given presentation.²

Proposition 1.6. Let X be a scheme. We have the following

- (1) The sheaf $\mathcal{L}(D)$ is invertible, and we obtain a 1-1 correspondance between Cartier divisors and invertible \mathcal{O}_X -subsheaves of \mathcal{K}_X^* .
- (2) We have that $\mathcal{L}(D-E) = \mathcal{L}(D) \otimes_{\mathscr{O}_X} \mathcal{L}(E)^{-1}$.
- (3) Two Cartier divisors D and E are linearly equivalent, if and only if $\mathcal{L}(D)$ is isomorphic (abstractly) to $\mathcal{L}(E)$.

Proof. As in [Ha], Proposition 6.13.

Corollary 1.7. We have an injective group homomorphism

$$\operatorname{CaCl}(X) \longrightarrow \operatorname{Pic}(X).$$

Proposition 1.8. If X is integral then CaCl(X) = Pic(X).

Proof. See [Ha], Proposition 6.15.

1.8.1. The result holds when X is projective over a field, but not in general.

Corollary 1.9. If X is Noetherian, integral, separated, and locally factorial, then Cl(X) = Pic(X).

Corollary 1.10. Let $X = \mathbf{P}_k^n$, the projective n-space over a field k. Then every invertible sheaf on X is isomorphic to $\mathcal{O}(n)$, for some integer n.

1.11. **Effective Cartier divisors.** A Cartier divisor D on X, is called *effective* if we can find an cover U_i , such that the Cartier divisor (U_i, f_i) is represented with $f_i \in \Gamma(U_i, \mathcal{O}_{U_i})$, for all i.

Note that if D is effective, and U_i all affine, the local generators $f_i \in A_i = \Gamma(U_i, \mathcal{O}_{U_i})$ are regular elements; that is f_i is not a zero divisor.

Let D be an effective Cartier divisor. For two different open, affine, U_i and U_j we have that f_i/f_j is invertible on the intersection, and it follows that the local generators $f_i \in A_i$ generate an idealsheaf $\mathscr{I}_D \subseteq$

²To me it would make more sense to take the submodule generated by f_i , and not its inverse. I would appreciate if someone could explain why not to do so.

 \mathcal{O}_X . We get a correspondence between effective Cartier divisors on X, and locally principal subschemes where the local generators are regular.

By our earlier conventions we have that if D is an effective Cartier divisor then corresponding ideal sheaf \mathscr{I}_D equals $\mathscr{L}(-D)$.

Example 1.12. Consider $X = \mathbf{P}_k^2$, the projective plane. A global section, non-zero, $f \in \Gamma(X, \mathcal{O}(n))$ with n > 0, determines a hypersurface $V(f) \subseteq X$. It also determines an effective divisor D = V(f) by the standard cover $\{D_+(x_i)\}$ of X, and with local generators $f_i = f/x_i^n$.

Two different, non-zero, global sections f and g of $\mathcal{O}(n)$ give different effective Cartier divisors, but their difference is a principal divisor (f/g).

1.13. Properties of projective n-space. Let $X = \mathbf{P}_A^n$, be the projective n-space over $\operatorname{Spec}(A)$. We have that $X = \operatorname{Proj}(S)$, where S is the graded polynomial ring $A[x_0, \ldots, x_n]$, where the variables all have degree one. The sheaf $\mathcal{O}_X(1)$ is invertible, and generated by global sections x_0, \ldots, x_n . Thus the map

$$\bigoplus_{i=0}^{n} \mathscr{O}_X e_i \longrightarrow \mathscr{O}_X(1)$$

sending $e_i \mapsto x_i$, is surjective. For any morphism $f: Y \longrightarrow X$, we have that $f^*\mathscr{O}_X(1) = \mathscr{L}$ is invertible, and that the global sections $f^*(x_i) = s_i$, generate \mathscr{L} .

Theorem 1.14. Let Y be a scheme. If \mathscr{L} is an invertible sheaf on Y, and s_0, \ldots, s_n are global sections that generate \mathscr{L} , then there is a unique morphism $f: Y \longrightarrow \mathbf{P}_A^n$ such that $f^*\mathscr{O}_X(1) = \mathscr{L}$, and $f^*(x_i) = s_i$, for $i = 0, \ldots, n$.

Proof. We did not have time to do this proof properly, but in essence we followed [Ha], Theorem 7.1. To construct a morphims form Y, we construct morphisms locally $f_i: U_i \longrightarrow D_+(x_i)$. The open cover U_i of Y is given as

$$U_i = \{ y \in Y \mid (s_i)_y \notin \mathfrak{m}_y \mathscr{L} \}.$$

We observe that as the section s_i is invertible on U_i , it follows that $\mathscr{L}_{|U_i} = s_i \mathscr{O}_{X|U_i}$. In particular any section s_j restricted to U_i can be written as $s_j = s_{i,j} s_i$, with $s_{i,j} \in \mathscr{O}_{U_i}$. To give a morhism $f_i : U_i \longrightarrow D_+(x_i)$ is to give an ring homomorphism

$$A[y_0,\ldots,\hat{y}_i,\ldots,y_n] \longrightarrow \Gamma(U_i,\mathscr{O}_{U_i}) = \Gamma(U_i,\mathscr{L}),$$

where $y_j = x_j/x_i$. The A-algebra homomorphism we define sends y_j to $s_{i,j}$. One checks that these maps have the right properties.

Department of Mathematics, KTH, Stockholm, Sweden E-mail address: skjelnes@kth.se