1.1. **Graded algebras.** Let X be a scheme. Let \mathscr{S} be a quasi-coherent sheaf of \mathscr{O}_X -algebras, and assume that $\mathscr{S} = \bigoplus_{d \geq 0} \mathscr{S}_d$ is a graded algebra. We assume that $\mathscr{S}_0 = \mathscr{O}_X$ and that \mathscr{S} is locally generated by \mathscr{S}_1 as a \mathscr{S}_0 -algebra.

Example 1.2. If $\mathscr{I} \subseteq \mathscr{O}_X$ is a quasi-coherent ideal sheaf, then the Rees algebra $\mathscr{S} = \bigoplus_{d \geq 0} \mathscr{I}^d$ is a typical example we will consider.

Example 1.3. If \mathscr{E} is a quasi-coherent \mathscr{O}_X -module, the symmetric algebra $\mathscr{S}(\mathscr{E})$ is another typical example of graded \mathscr{O}_X -algebras.

If \mathscr{S} is a graded \mathscr{O}_X -algebra as above, we define a scheme

$$\pi \colon \operatorname{Proj}(\mathscr{S}) \longrightarrow X$$

over X. For any open affine $U \subseteq X$, the scheme $\operatorname{Proj}(\mathscr{S})_{\pi^{-1}(U)}$ is the Proj of the graded algebra $\Gamma(U,\mathscr{S}_{|U})$. Locally we then also have the invertible sheaves $\mathscr{O}(1)$ defined, and these glue to form an invertible sheaf $\mathscr{O}(1)$ on $\operatorname{Proj}(\mathscr{S})$.

Example 1.4. $X = \operatorname{Spec}(A)$, and $\tilde{\mathscr{E}}$, where E is a free A-module of rank n+1. Then the symmetric algebra $S(\tilde{\mathscr{E}}) = S(E)$ is isomorphic to the polynomial ring $A[X_0, \ldots, x_n]$ in n+1-variables over A. Then $\operatorname{Proj}(S(E)) = \mathbf{P}_A^n$.

Example 1.5. Let $I = (x, y) \subseteq A = k[x, y]$ the maximal ideal corresponding to the origo in the plane. Then $\bigoplus_{d\geq 0} I^d = A[T, U]/(Ty - Ux)$, so $\operatorname{Proj}(\bigoplus I^d)$ is a closed subscheme of the projective line over A. We have that $D_+(T)$ and $D_(U)$ are both isomorphic to the affine plane, and we have that the fiber over A/I = k is the projective line \mathbf{P}^1_k .

Proposition 1.6. Let X be a Noeterian scheme, and \mathscr{S} a graded \mathscr{O}_X -algebra where \mathscr{S}_1 a coherent \mathscr{O}_X -module. Then $\pi \colon \operatorname{Proj}(\mathscr{S}) \longrightarrow X$ is a proper morphism.

Proof. Properness is a local property, and locally we have proven this statement. \Box

Proposition 1.7. Let X be a Noetherian scheme, and \mathscr{E} a coherent, locally free of rank n module. Then $\mathbf{P}(\mathscr{E}) = \operatorname{Proj}(\mathscr{S}(\mathscr{E}))$ has the following universal defining property. Let $g: Y \longrightarrow X$ be a scheme. A morphism from Y to $\mathbf{P}(\mathscr{E})$, compatible with the morphism to X, is equivalent with an invertible sheaf \mathscr{L} on Y, and a surjection $g^*\mathscr{E} \longrightarrow \mathscr{L}$.

Proof. We have proved this locally. For a proof see [Ha] Proposition 7.12. \Box

Definition 1.8. Inverse image sheaf. Let $f: X \longrightarrow Y$ be a morphism of schemes, and let \mathscr{I} be a quasi-coherent sheaf of ideals on Y. We let $f^{-1}\mathscr{I}\mathscr{O}_X$ denote the ideal sheaf on X, given as the image of the natural map of quasi-coherent sheaves $f^*\mathscr{I} \longrightarrow f^*\mathscr{O}_Y = \mathscr{O}_X$.

Proposition 1.9. Let \mathscr{I} be a (quasi-) coherent idealsheaf on a Noetherian scheme X. Let $\pi \colon \tilde{X} \longrightarrow X$ be the blow-up of X along \mathscr{I} .

- (1) The inverse image sheaf $\pi^{-1}(\mathscr{I}\mathscr{O}_{\tilde{X}})$ is invertible.
- (2) Let $U = X \setminus Z$, where Z is the closed subscheme defined by \mathscr{I} . Then π restricted to $\pi^{-1}(U)$ is an isomorphism.

Proof. We proved this as in [Ha], Proposition 7.13. \square

Proposition 1.10. Universal property of blow-up. Let $f: Z \longrightarrow X$ be a morphism of schemes. Assume that $f^{-1}\mathscr{I}\mathscr{O}_X$ is invertible, for a coherent ideal sheaf \mathscr{I} on a Noetherian X. Then there exist a unique factorization of f via $Z \longrightarrow \tilde{X}$, where \tilde{X} is the blow-up of X along \mathscr{I} .

Theorem 1.11. Let X be a quasi-projective variety (integral, separated scheme of finite type over an algebraically closed field k that can be realized as a subscheme of a projective n-space over k). If Z is a variety, and $f: Z \longrightarrow X$ is a birational (isomorphism on a dense open subset) map, then $f: Z \longrightarrow X$ is isomorphic to the blow-up map for some coherent ideal sheaf \mathscr{I} in X.

Theorem 1.12. Let $X = \mathbf{P}_A^n$, the projective n-space over a $Y = \operatorname{Spec}(A)$. We have an exact sequence

$$0 \longrightarrow \Omega_{X/Y} \longrightarrow \mathscr{O}_X(-1)^{n+1} \longrightarrow \mathscr{O}_X \longrightarrow 0.$$

Proof. We proved this as in [Ha], Theorem 8.17.

Theorem 1.13. Let X be an irreducible, separated scheme of finite type over an algebraically closed field k. Then $\Omega_{X/k}$ is locally free of rank $n = \dim(X)$ if and only if X is non-singular.

The tangent sheaf of a nonsingular scheme X is defined as the dual of $\Omega_{X/k}$. If $n = \dim(X)$, then its canonical sheaf is $\omega_X = \wedge^n \mathcal{O}_{X/k}$.

DEPARTMENT OF MATHEMATICS, KTH, STOCKHOLM, SWEDEN *E-mail address*: skjelnes@kth.se