REGIONAL TIMES MODEL FOR ANALYZING THE FUTURE USE OF BIOMASS AND BIOFUELS IN FRANCE AND SWEDEN

Nicklas Forsell
Gilles Guerassimoff
Dimitris Athanassiadis
Edi Assoumou
Overview of the presentation

- **Context**
- **Objectives**
- **Model and assumptions**
 - Modeling
 - Case study of France
 - Case study of Sweden
 - Scenarios
- **Results**
- **Conclusion and perspectives**
Biomass and biofuels are increasingly being seen as important energy sources in Europe. The incorporation and future use of biomass sources are however highly uncertain:

- Which land areas are available without competition with food supply?
- Which sources of biomass can be used?
- What is the possible incorporation rate of conversion technologies?
- What is the limit of domestic bioenergy production?

To answer these questions, prospective studies are helpful to policy makers.
Objectives

- A MARKAL/TIMES model of the use of biomass was created
 - Detailed representation of biomass sources (agriculture & forestry)
 - Sub-national/regional representation of the biomass sources
 - Rich technological database (1st and 2nd generation)
- Case studies of France and Sweden, assessing the use of biomass for energy purposes
 - Possible contribution of biomass to the energy sector
 - Technologies utilized to convert biomass
 - Regional utilization of biomass sources
MARKAL/TIMES model

- Considered time horizon: 2005-2050
- The model only considers:
 - Available agricultural land for energy without food competition
 - Available wood for energy without competing with other sectors
- Detailed technology database including the most promising 2nd generation biofuel production
 - Biomass-To-Liquids (BTL) processes
 - 2nd generation cellulosic ethanol processes
- Considers co-products by the conversion technologies
General outline of the sub-national MARKAL/TIMES model
In the model, France is divided into 9 regions.

Each region has a detailed economic description (cost of production and transport by resource).

Potentials and cost of biomass sources according to the VALERBIO project.
Case study of France

Context

<table>
<thead>
<tr>
<th>Starch crops</th>
<th>Sugar crops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize grain</td>
<td>Sugar beet</td>
</tr>
<tr>
<td>Maize straw</td>
<td></td>
</tr>
<tr>
<td>Wheat grain</td>
<td></td>
</tr>
<tr>
<td>Wheat straw</td>
<td></td>
</tr>
<tr>
<td>Tricale grain</td>
<td></td>
</tr>
<tr>
<td>Tricale straw</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Generation</th>
<th>1<sup>st</sup></th>
<th>2<sup>nd</sup></th>
<th>1<sup>st</sup></th>
<th>2<sup>nd</sup></th>
<th>1<sup>st</sup></th>
<th>2<sup>nd</sup></th>
<th>1<sup>st</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio-diesel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bio-ethanol</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>FT-diesel</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Bio-HVO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Objectives

- Oil crops
 - Rapeseed
 - Sunflower
 - Soy bean

Model and assumptions

<table>
<thead>
<tr>
<th>Woody crops</th>
<th>Grassy crops</th>
<th>Forestry products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapeseed</td>
<td>Sunflower</td>
<td>Soy bean</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Generation</th>
<th>1<sup>st</sup>, 2<sup>nd</sup></th>
<th>1<sup>st</sup>, 2<sup>nd</sup></th>
<th>2<sup>nd</sup></th>
<th>2<sup>nd</sup></th>
<th>2<sup>nd</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio-diesel</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bio-ethanol</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FT-diesel</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bio-HVO</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Case study of France

Amount of available forest defined per:

- **Region**
 - 9 regions

- **Wood types**
 - Small wood (crown & small branches)
 - Medium wood (top stem & large branches)
 - Big wood (stem)

- **Accessibility classes**
 - Easy
 - Moderately difficult
 - Difficult
 - Very difficult

![Diagram of forest structure](image-url)
Case study of Sweden

- In the model, Sweden is divided into 21 counties
- Forestry resources expressed on county level
- Agricultural resources expressed on a national level
Agricultural resources:

- **Expressed on a national level**
- **Potentials according to the RES2020 project**
- **Costs according to an extensive literature review**

<table>
<thead>
<tr>
<th>Context</th>
<th>Objectives</th>
<th>Model and assumptions</th>
<th>Results</th>
<th>Conclusions and perspective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural resources:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Case study of Sweden

- Forestry resources separated into:
 - Forestry residues (crown & branches)
 - Pulpwood (top stem & small stems)

- Detailed cost-supply curves of forestry residues for each county

- Pulpwood expressed on a national level
Numerous potential level scenarios were created considering aspects such as:

- Business as usual (BAU)
- All for industry (wood and/or agricultural crops are mostly used for non-energy purposes)
- All for energy (wood and/or agricultural crops are mostly used for energy purposes)
- Medium/ high availability of short rotation forestry
- Moderate/ high price of biomass
Numerous demand level scenarios were created considering:

- Heat for direct heating
- Biofuels for road transport
- Electricity from CHP

- Heat from CHP
- Biofuels for air transport
Results

Mix of technologies for biofuel production in France
Results

Marginal price and regional utilization of forest residues in Sweden

- Context
- Objectives
- Model and assumptions
- Results
- Conclusions and perspective
The sub-national MARKAL/TIMES model can be used to assess:

- Limit of domestic bioenergy production
- National/regional utilization level of biomass sources
- Difference in utilization rate between regions
- Mix of technologies utilized to convert biomass
- Incorporation rates of 2nd generation conversion technologies
Conclusions & perspectives

- For France we observe:
 - The objective of 20 Mtoe bioenergy production can be reached, but 40 Mtoe might be too ambitious
 - High diversification in utilized conversion technologies and in utilized biomass sources
 - 1st generation biodiesel and ethanol will still be important sources of biofuels by 2050
- For Sweden we observe:
 - High utilization rate of forest residues
 - Large differences in regional utilization of biomass sources
 - Regions can be seen as price setters of biomass sources
THANK YOU FOR YOUR ATTENTION

Nicklas Forsell
Gilles Guerassimoff
Dimitris Athanassiadis
Edi Assoumou

Centre for Applied Mathematics, Mines ParisTech
Swedish University of Agricultural Sciences