

Rail corrugation growth on small radius curves

Peter T. Torstensson CHARMEC / Department of Applied Mechanics Chalmers University of Technology, Göteborg, Sweden

17th Nordic Seminar on Railway Technology, Tammsviks herrgård, Bro, October 3-4, 2012

- Background
- Modelling
- Results
- Conclusions

ackground

Modelling

Conclusions

Rutting corrugation at SL

Corrugation characteristics

[P.T. Torstensson, J.C.O. Nielsen, Wear, 2009]

- Curve radius 120 m and vehicle speed about 30 km/h
- Corrugation wavelengths 5 cm and 8 cm
- Within a grinding interval of one year, corrugation with maximum peak-to-peak magnitude 0.15 mm develops on the low rail

Results

• Roughness growth was observed until the measurement 300 days after grinding. Thereafter only limited additional growth was generated

Corrugation remedy

[New measurement campaign, intended for international publication]

• Application of a friction modifier prevents the re-development of corrugation after rail grinding

Roughness level in 1/3 octave bands, friction modifier applied

Rail irregularity measured with a coordinate measurement machine

Lateral plastic flow down to a depth of 45 µm orientated towards the field side
 No difference in microstructure at corrugation crests and troughs was observed

Chalmers University of Technology

Chalmers University of Technology

[Illustration of a wheel rolling on a 4 cm single wavelength irregularity]

The trailing wheelset obtains a close to radial steering position but the deficient rolling radius difference creates large magnitude longitudinal creep forces

Compared to friction coefficient 0.6, the reduced steering moment results in an increased AOA of the leading wheelset and a displacement of the trailing wheelset towards the low rail

No growth of roughness is predicted for friction coefficient 0.3 (e.g. friction modifier) For friction coefficient 0.6 growth of roughness is predicted at several wavelengths

[Results calculated for the non-Hertzian/non-steady contact model. Broadband wavelength rail irregularity modelled with magnitude according to the limit in ISO3095. Curve radius 120 m and vehicle speed 25 km/h]

Roughness growth stops due to a decreasing phase between the calculated wear depth and the initial rail irregularity

[Accumulated wear calculated for the non-Hertzian/non-steady contact model for after 1200 wheel passages. Initial single wavelength rail irregularity of 3.8 cm wavelength modelled with magnitude according to the limit in ISO3095. Friction coefficient 0.6, curve radius 120 m and vehicle speed 25 km/h]

Magnitude (1/24 octave bands) of the transfer function \overline{H} calculated for the low rail contact of the leading and trailing wheelsets

---: low rail contact of leading wheelset, --: low rail contact of trailing wheelset

Growth of corrugation on the curve between Alvik and Stora mossen is generated by the low rail contact of the leading wheelset in passing bogies

[Accumulated wear after one wheel passage calculated for the Hertz/FASTSIM contact model. Broadband initial rail roughness modelled with magnitude according to the limit in ISO3095. Curve radius 120 m, friction coefficient 0.6 and vehicle speed 30 km/h]

Wavelength-fixing mechanism

Wavelength-fixing mechanism associated with the roughness peak at about 5 cm

Wavelength-fixing mechanism primarily associated with the first antisymmetric bending eigenmode of the wheelset

[A single wavelength irregularity of wavelength 4.5 cm and amplitude 32 µm is modelled on the low rail. Friction coefficient 0.6, curve radius 120 m and vehicle speed 30 km/h]

Wavelength-fixing mechanism primarily associated with the first symmetric bending eigenmode of the wheelset

[A single wavelength irregularity of wavelength 7.5 cm and amplitude 32 µm is modelled on the low rail. Friction coefficient 0.6, curve radius 120 m and vehicle speed 30 km/h]

[Development of rail roughness for 40 000 wheel passages calculated for the non-Hertzian and non-steady contact model. Broadband initial rail roughness modelled with magnitude according to the limit in ISO3095. Curve radius 120 m, friction coefficient 0.6, vehicle speed 30 km/h and $0.95 \cdot D_{w}$]

Conclusions

- Corrugation growth on the curve between Alvik and Stora mossen is generated by the leading wheelset of passing boiges. The acting wavelength-fixing mechanisms are primarily influenced by the first symmetric and first antisymmetric bending eigenmodes of this wheelset
- For friction coefficient 0.3, predictions of corrugation growth on the low rail of a 120 m radius curve showed decreasing roughness magnitudes in the entire studied wavelength interval. For friction coefficient 0.6, corrugation developed at several wavelengths. This agrees with observations from a measurement campaign that shows friction modification is a successful mitigation measure to prevent the re-development of corrugation
- For a single wavelength and broadband roughness initial rail irregularity, the rapid initial growth of corrugation was predicted to eventually stop. The fully grown corrugation moved backwards (with respect to the rolling direction of the train) with a constant amplitude

Suggestions for future work

- Verify the predicted longitudinal translation of the fully grown corrugation in a measurement campaign
- Investigate important parameters that determine the growth of corrugation, e.g. magnitude of contact forces, amplitude and wavelength content of initial roughness

Thank you for your attention!

For friction coefficient 0.3 the corrugation wears off for increasing number of wheel passages
 For friction coefficient 0.6 the corrugation moves backwards with constant amplitude

[Accumulated wear calculated for the non-Hertzian/non-steady contact model after 300 wheel passages. Initial single wavelength rail irregularity of 5 cm wavelength modelled with magnitude according to the limit in ISO3095. Curve radius 120 m and vehicle speed 25 km/h]

- Present a model for simulation of long-term rail roughness growth on small radius curves
- Investigate the influence of non-Hertzian and non-steady contact effects on calculations of long-term roughness growth
- Investigate the development of corrugation on the small radius curve on the Stockholm metro selected for the measurement campaign

Chalmers University of Technology

Background

Modelling

Archard wear law applied on one sliding contact element

Results

$\Delta z = k_{w} \frac{p_{z} \Delta d}{H}$	
$\Delta d = \mathbf{v}_s \Delta t$	
$\Delta t = \Delta x / v$	

Conclusions

Mapping of wear depth Δz onto the rail surface

Roughness level in 1/3 octave bands. Friction modification applied on the southbound track

No growth of roughness is observed when friction modification is applied

Acceleration levels measured in lateral direction exceeds those obtained in vertical direction Increased acceleration level observed at approximately 190 Hz is caused by corrugation wavelength 5 cm (vehicle speed approximately 35 km/h)

CHALMERS Chalmers University of Technology Background Modelling Results Conclusions Transfer function H(1/λ) Transfer function H(1/λ)

Magnitude and phase of the transfer function, $\overline{H}(1/\lambda)$, between the calculated wear depth and the rail irregularity:

0.2

0

10

----: Low rail contact, $\mu = 0.3$, ---: Low rail contact, $\mu = 0.6$, ---: High rail contact, $\mu = 0.6$

50

 λ [mm]

70

No roughness growth is predicted for the high rail contact of the trailing wheelset

30

30± 0

2

4

x [m]

6

8

[Broadband wavelength rail irregularity modelled with magnitude according to the limit in ISO3095. Curve radius 120 m and vehicle speed 25 km/h]

 $150 \ 110 \ 90$

0.2

0

10

----: Low rail contact, $\mu = 0.3$, ---: Low rail contact, $\mu = 0.6$, ---: High rail contact, $\mu = 0.6$

50

 λ [mm]

70

No roughness growth is predicted for the high rail contact of the trailing wheelset

30

30± 0

2

4

x [m]

6

8

[Broadband wavelength rail irregularity modelled with magnitude according to the limit in ISO3095. Curve radius 120 m and vehicle speed 25 km/h]

 $150 \ 110 \ 90$

Chalmers University of Technology

