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Outline

® Introduction and motivation of work

@ Microstructural investigations

@ Anisotropy in crack propagation law
@ Anisotropic fracture criterion

@ Numerical results

@ Concluding remarks and future work
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Introduction and motivation of work

Plastic flow in the surface layer of rail A surface crack at the gauge corner
(head check)

« Large plastic deformations close to the rail surface
e Evolution of anisotropy in pearlitic steel in the surface layer

* Main goal: Increase our understanding of how anisotropy
influences initiation and propagation of surface cracks

 DB: RCF maintenance costs up to €150 million in year
* 90% rail grinding is due to head checks, €40 million in year

« Improve simulation tools to obtain more accurate fatigue
life predictions
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Pearlite structure and evolution of anisotropy

Cementite
2 Ferrite

-

Micrographs of a pearlitic steel rail at the depth of 2 mm & 100
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Microstructural investigations:

» Rail segment produced by voestalpine Schienen GmbH

e Pearlitic rail steel 350HT
(0.79% C, 0.44% Si, 1.19% Mn, 0.014% P, 0.013% S, 0.08% Cr)

» Tested in a full scale test rig:
= 23 tvertical, 4 t lateral force
= 100000 passes
» No rail inclination, no angle of attack
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 Anisotropic surface layer has a very small thickness (~ 1 mm)
» Material properties have a large gradient through the surface layer

" Changes in mechanical properties:
’60' * Hohenwarter et al, 2011, Metall. Mater. Trans. A 42 (6)
540 o &
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» Fracture toughness
= Cyclic threshold values
= Crack propagation rate
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Anisotropic fracture toughness

From: Hohenwarter et al, 2011, Metall. Mater. Trans. A 42 (6)
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Anisotropy in the crack propagation law:

@ Anisotropic fracture toughness

@ Resistance against crack propagation is directional dependent

@ Crack driving force G ; based on the concept of material forces:

Tillberg et al, 2010, Int. J. Plasticity 26(7)
&
Denzer et al, 2003, Int. J. Numer. Meth. Eng. 58 (12)

@ Crack driving potential, ® :

®(e) = (G- e (Gun(©)

@ Propagation in the direction of maximum parallel dissipation, e* :
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Anisotropic fracture threshold:

« Fracture threshold, Gin — resistance against crack propagation

 Orientation angle in each colony, By

* Average orientation angle, 3:

N
B=(Bu) = w5 2on=i Busn

= A measure of degree of alignment — degree of anisotropy
= QOrientation with lowest resistance against crack propagation
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An anisotropic fracture surface

« Lowest and highest fracture threshold, Gin,1 and Gth,2 — functions of
« Transition in the microstructure —; variation of 3 over the depth

Gino — Aniso
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Evolution of fracture surface over the depth
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Simulation setup:
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* Hertzian contact

pn(z,1) :pNO\/l — “’@gt 2

pno = 800 MPa, d = 14.8 mm

pr(z,t) = ppn(z,t)
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Effect of degree of anisotropy on crack propagation

| |~ Gin1.Gin2 = 435,435 [N m/m?]
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Thickness of the anisotropic surface layer: 1 mm
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Effect of thickness of anisotropic surface layer
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sEvolution of anisotropy in pearlitic steel as a railway material has an
Important effect on the properties and behavior of the material in service

sIncluded the effect of anisotropy in a fatigue crack propagation law based
on the concept of material forces adopted [Brouzoulis et al, 2011, Comput. Mech. 47]

*Changes in the resistance against crack propagation in different directions:
» Fracture threshold function of degree and orientation of
alignment

« Parametric studies of crack growth simulations for a simple 2D model of
wheel-rail contact:
» Crack path highly sensitive to the degree of anisotropy
evolved and thickness of the anisotropic surface layer

* More realistic material model that takes into account plasticity, hardening
and anisotropy evolution

» Develop a model to study the effect of anisotropy on crack initiation
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Thank You For Your Attention!
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Gauge corner sample
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Influence of anisotropy in numerical
prediction of RCF

@ Anisotropy in the material model (stress-strain behavior) :
- anisotropic yield criterion (yield stress depends on loading direction)

(“Hybrid micro-macromechanical modeling of anisotropy evolution in pearlitic steel”
submitted for international publication)

- crack-driving force depends on anisotropy

@ Anisotropy in the crack propagation law :
- anisotropic fracture toughness (present work)

@ Anisotropy in crack initiation criterion:
- anisotropic initiation resistance

Div. of Material and Computational Mechanics 23



CHALMERS Dept. of Applied Mechanics

Crack-driving force and crack propagation

» Crack-driving force, G : [Tillberg et al, 2010, Int. J. Plasticity 26 (7) &
Denzer et al, 2003, Int. 3. Numer. Meth. Eng. 58 (12)]

G =G+ Gsur = fo, - WVx)dQx + [, WE.Ndlx

>»=yI—F'P
Rate independent propagation law: [Brouzoulis et al, 2011, Comput. Mech. 47]

> 1. e *
@ =a= ;(q)(e ))e

I Aiccinatinn e*

Crack-driving potential, ®:

<I>(e)=(g-e)
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