The track-friendly high-speed bogie developed within Gröna Tåget

A. Orvnäs¹ (former 2), E. Andersson², S. Stichel², R. Persson³

- ¹ Mechanical Systems, Interfleet Technology
- ² Division of Rail Vehicles, KTH Royal Institute of Technology
- ³ Mainline and Metros, Bombardier Transportation

BOMBARDIER

17th Nordic Seminar on Railway Technology Tammsvik Herrgård, 3-4 October 2012

Outline

- Introduction
- Investigated concepts
- Radial self-steering (RSS)
- Active secondary suspension (ALS and AVS)
- Conclusions

Gröna Tåget

- Research and development programme initiated in 2005 by Banverket (today: Trafikverket) – closed by the end of 2012
- Develop a concept for the next generation of high-speed trains for Nordic conditions
- Increase vehicle speed from today's 200 km/h up to 250– 320 km/h
- Focus: vehicle dynamics, energy consumption, passenger issues, infrastructure, market needs, capacity, economics...

Introduction

Track-friendly high-speed bogie

- Challenge: contradiction between stability on straight track at high speed and reasonable wheel/rail wear in small- and medium-radius curves
- Developing and optimizing a track-friendly high-speed bogie by simulations, verifying the design by on-track tests and service use

Introduction

Track friendliness

- Low wheel/rail forces on the track to avoid track wear and fatigue
- Minimize track deterioration, causing maintenance and renewal (high costs, traffic interruptions)
- Costs for track deterioration to be included in the track access charges
 - → Increased need for track-friendly vehicles

Radial steering running gear

- Stiff connection prevents the wheelset to take up radial position
 - → Increased friction energy and wear in curves
- The longitudinal stiffness of the wheelset guidance is an important issue to allow radial self-steering

Introduction

Running stability

- A certain amount of wheelset guiding stiffness is necessary to avoid bogie hunting
- Lower guiding stiffness can often be compensated by a higher amount of yaw damping
- A thorough optimization of other important parameters is also necessary

Introduction

Strategy

- Running stability is just one of several targets
- Track friendliness and good ride quality are other important issues

Therefore: design for *sufficient* running stability while optimizing the total performance

Introduction

Investigated concepts

Concept	Radial self- steering (<i>RSS</i>)	Active radial steering (ARS)	Active lateral secondary suspension (ALS)	Active vertical secondary suspension (AVS)
What?			A CONTRACT OF THE PARTY OF THE	Actuators
Theoretical study	2005–06	2006–07	2006–07	2010–11
On-track tests	2006–07	2007–08	2007–08	2013?
Service experience	2009 →	_	2009 →	_
First firm order	_	_	2010	-

Radial self-steering (RSS)

Simulation conditions

- SIMPACK model of a Swedish REGINA car
- Ten wheel/rail combinations
 - → equivalent conicity: 0.01-0.4 (Type 1 and 2)

Introduction Investigated concepts

Radial self-steering

Active suspension

Conclusions

Simulation results

Wheel/rail wear

Introduction
Investigated concepts

Radial self-steering

Active suspension Conclusions

Simulation results

Running stability

Introduction
Investigated concepts

Radial self-steering Active suspension

Conclusions

Straight track Eq. conicity = 0.3 v = 275 km/h

On-track tests

- Different Swedish tracks (straight track, curves)
- Stability tests on straight track, equivalent conicity 0.1–0.8 Measurement results: Stability $(\Sigma Y_{100rms}) = 30 \%$ of limit value
- High cant deficiency curving at curve radius 300 m Measurement results: Wear $(Y_{ast}) = 60-75$ % of limit value

Swedish high-speed record in September 2008: 303 km/h

Model validation

Lateral track shift forces

Introduction Investigated concepts

Radial self-steering

Active suspension

Conclusions

Active secondary suspension (ALS and AVS)

Active lateral suspension

Measurement results

Ride comfort improvements

Reduced secondary lateral play

...resulting in:

- possible speed increase for the same level of ride comfort
 - maintained ride comfort although track conditions are unfavourable
- increased carbody width

Active vertical suspension

Simulation results

- Generally improved vertical ride comfort
- Less sensitivity for suspension stiffness
- Less sensitivity for carbody bending frequency

Modified vertical air spring stiffness

Introduction Investigated concepts Radial self-steering Active suspension

O-----

Active vertical suspension

Simulation results

- Generally improved vertical ride comfort
- Less sensitivity for suspension stiffness
- Less sensitivity for carbody bending frequency

Modified carbody bending frequency

Conclusions

- Developing a bogie with relatively soft wheelset guidance to allow passive radial self-steering
- Appropriate yaw damping applied to ensure stability on straight track at higher speeds
- The design verified by simulations and on-track tests
- Active suspension (ALS and AVS) mainly to improve ride comfort

More than 600.000 km in service operation without reports of poor running behaviour or wheel reprofiling due to wear

Thank you for your attention!

Contact:

