Dynamic Modelling of Iron-Ore Freight Wagons with 3-P Bogies RCF Investigation

ROYAL INSTITUTE OF TECHNOLOGY

Saeed Hossein Nia,
Per-Anders Jönsson, Sebastian Stichel

17th Nordic Seminar on Railway Technology
Oct 2012

ROMAL ROYAL INSTITUTE
OF TECHNOLOGY

3136 st

Devastating RCF problem in winters.
 ROYAL INSTITUTE

Investigated Parameters on wear and RCF

- Influence of Concrete Sleepers compared to wooden sleepers
- Influence wheel-rail Coefficient of friction
- Influence of the worn and new wheel Profiles
- Influence of the seasonal variations of track stiffness ROYAL INSTITUTE OF TECHNOLOGY

Background

The model is built using MbS software Gensys and validated against measurement via comparing lateral and vertical carbody accelerations in 2011 at KTH .

Major improvements in the model:

- Variable rail profiles
- Stiffer Vehicle by adding a yaw damper in the secondary suspension (Simulating the warping stiffness)

Method

- Shakedown diagram on surface initiated RCF (High axle load and $\mu>0.35$) and Fatigue Damage Function

$$
\mu=\frac{F_{T}}{F_{z}}=\frac{\sqrt{F_{x}^{2}+F_{y}^{2}}}{F_{z}}
$$

Wear is assumed to be proporsional to the Energy dissipation
$K=$ material yield stress in shear

Shakedown map, low pass filtered response from simulated operation on curve with radius of 476 m and mild track irregularities with cut-off frequency 20 Hz . The wheel-rail friction coefficient is 0.4 .

Influence of wheel-rail Coefficient of friction

$$
\mu=\frac{F_{T}}{F_{z}}=\frac{\sqrt{F_{x}^{2}+F_{y}^{2}}}{F_{z}}
$$

Influence of wheel-rail Coefficient of friction

In the track with more moderate irregularities the longitudinal and lateral forces compensate each other more. Therefore, in this case, the probability of RCF is not that dependent on the friction coefficient.

Influence of wheel profile (WP4)

Contact point positions on wheel and rail for different relative lateral displacements. Worn wheel profile (~ 150 ’ 000 Km) left and new wheel profile right.

ROYAL institute OF TECHNOLOGY

The vertical rail-track stiffness (Kzrt) and viscous damping (Czrt) are reduced and increased by a factor of ten.

Normal Contact forces

Influence of seasonal variations of the track stiffness

Tangential creep forces

No significant difference is observed regarding RCF and the wear number. Moreover, there has not been any study showing that the frequency of the forces affects the RCF of the wheels.

-Curve radius=476m

Wear and RCF

At poor adhesion more sliding is needed to steer the vehicle which results in higher dissipated energy, while these values become almost independent of the friction level at adequate adhesion since the steering capability is sufficient.

Conclusions

-The effect of both concrete and wooden sleeper track on the wear number and RCF probability is studied and it does not show any significant difference.

- The new wheel profile is more vulnerable regarding RCF.
- A parametric study applied on the wheel-rail friction coefficient shows its significant impact on the RCF. This dependency is even more pronounced with larger track irregularities.
- The effect of seasonal variations of track stiffness is investigated, and it cannot be concluded that it is the main reason for severe RCF during winter.
- RCF will happen on the tread of the inner wheels while negotiating curves below approximately 450 m radius

Conclusion

- In cold dry winters when the wheel material behaves more brittle raising the wheel-rail friction coefficient significantly increases the risk of RCF while the wear rate is not high enough to wear out the initiated cracks.

Future work

-Improving the model and validate it against the measured Track Forces as it is validated only via comparing the acceleration.

- Comming measurement on track stiffness in winter.
-Investigation of the effects of further increasing the axle load on the wheel-rail interaction.
-Investigation of the possibility of increasing the speed of the iron ore trains.
- Optimization of wheel profiles to minimize the costs of wear and rolling contact fatigue. MiW Konsult AB

Thank you very much for your attention

-
ROYAL INSTITUTE
OF TECHNOLOGY

