

ROYAL INSTITUTE

OF TECHNOLOGY

Benefits of Weight Reduction in High-Speed Train Operations

David Wennberg, Lic. Tech

Benefits of Weight Reduction in High-Speed Train Operations

Content:

- Light weighting
 - Why?
- Run cycle analysis
 - Track
 - Cycles
- Reference Trains
- Weight Reduction
- Scenarios
- Simulations
- Results

Light Weighting

Why:
TSI regulations limits the weight of HS trains
17 ton / axel
1000 ton / 400 m train

→ Limits the number of passengers

Environmental and economical driver:

- Reduced energy consumption
- Reduced wear
 - Reduced particle emmisons

x% weight reduction = y energy savings

= *z* reduced wear

 $= \delta SEK$

Run Cycle Analysis

• Represent realistic operating conditions

- Standard in automotive industry
 - Drive cycles: City, highway, etc.

A rapport by RICARDO Inc.

Run Cycle Analysis

ROYAL INSTITUTE OF TECHNOLOGY

• Simulated realistic run cycles

Run Cycle Analysis

ROYAL INSTITUTE OF TECHNOLOGY

Simulated realistic run cycles

- Track

Run Cycle Analysis

ROYAL INSTITUTE OF TECHNOLOGY

- Simulated realistic run cycles
 - Track
 - Cycle (traffic situation)

14 stops: Regional traffic (*REG run*) 300,000 km/year

Reference Trains

ROYAL INSTITUTE OF TECHNOLOGY

Property	Value	
Train type (-)	EMU	
Number of cars (-)	6	
Number of seats (-)	530	
Mass (tons)	338	
Adhevise weight (tons)	180	
Max tractive force (kN)	228	
Deceleration limit (m/s2)	0.6	
Max Power (kW)	5040 / 7200	

- Deceleration limit of 0.6 m/s2
- Blended braking style:

Regenerative brakes as much as possible

Weight reduction

ROYAL INSTITUTE OF TECHNOLOGY

Weight reductions

• Affects:

- Adhesive weight
- Use of mechanical / regenerative breaks
- Acceleration characteristics

Scenarios

How the weight reduction can be utilised

reference vehicle run time: t₀ reference vehicle total mass: m₀

1. Only mass reduction	2. Reduced top speed	3. Reduced motor power	4. Increased payload capacity
• m < m ₀	• m < m ₀	• m < m ₀	• m = m ₀
• t < t ₀	• t = t ₀	• t = t ₀	• t = t ₀

Simulations

Software STEC (Simulation of Train Energy)

- Train data
 Hereinge
 Value
 Units

 Petersce
 MC-GCL
 Total datases
 444
 Line
 Autor

 Total control
 Description
 456
 Line
 Autor
 Description

 Total datases
 454
 Line
 Ministration
 Total datases
 454
 Line

 Total control
 590
 Total datases
 454
 Line
 Ministration
 7
 Control

 Total control
 590
 Total datases
 455
 Dotal datases
 452
 Total datases

 Number of parsengers
 223
 Dotal datases
 7

 Bisendation run total
 Dotal datases
 Dotal datases
 7

 Rest
 Draw points optimized
 Dotal datases
- Consumption)
 In-house KTH software programmed by Johan Öberg at MiW Konsult AB
 - Used in TOSCA (Technology Opportunities and Strategies toward Climate friendly trAnsport)
 - Simulated results have been verified by tests
 - Energy within 2%
 - Travel time within 1%

OF TECHNOLOGY

Simulations - Output

- Output
 - Gross energy consumption
 - Regenerated energy from braking

→ Net energy consumption

- Reduced breaking energy

→ Reduced brake wear

- Run time
- Cost savings / extra income

$$C_{year} = (0.594 \cdot dE_{tot} + 0.135 \cdot dE_M) \cdot S + K_i, \quad i = 1-3$$

$$K_1 = 3.51 \cdot 0.45 \cdot N \cdot S \cdot dT$$

$$K_2 = 0$$

$$K_3 = 2200 \cdot dP \cdot \frac{r}{1 - (1 + r)^{-n}}$$

Simulations - Simulated Trains

ROYAL INSTITUTE OF TECHNOLOGY

Simulations - Simulated Trains

Simulations - Simulated Trains

REG

Summary:

- 40 virtual trains for each reference train
- Scenario 1, 2 and 3: Values derived by simulations
 - 2 and 3 < 2sec diff. compared to ref. vehicles

Results (scenario 1-3)

ROYAL INSTITUTE OF TECHNOLOGY

Reduced net energy consumption

Results (scenario 1-3)

ROYAL INSTITUTE OF TECHNOLOGY

Reduced mechanical breaking energy

Results (scenario 4)

Number of seats

Results – cost savings / extra income

ROYAL INSTITUTE OF TECHNOLOGY

Results – summary values

ROYAL INSTITUTE OF TECHNOLOGY

% reduced energy consumption

% weight reduction

	LD 5040	LD 7200	REG 5040	REG 7200
Scenario 1	0.37	0.37	0.49	0.47
Scenario 2	0.54	0.49	0.83	0.76
Scenario 3	0.32	0.23	0.42	0.28
Scenario 4	1.93	1.93	1.93	1.93

Results – summary values

ROYAL INSTITUTE OF TECHNOLOGY

% reduced energy consumption

% weight reduction

	LD 5040	LD 7200	REG 5040	REG 7200
Scenario 1	0.37	0.37	0.49	0.47
Scenario 2	0.54	0.49	0.83	0.76 -
Scenario 3	0.32	0.23	0.42	0.28 -
Scenario 4	- 1.93	1.93	1.93	1.93 -

Results – summary values

ROYAL INSTITUTE OF TECHNOLOGY

% reduced energy consumption

% weight reduction

	LD 5040	LD 7200	REG 5040	REG 7200
Scenario 1	0.37	0.37	0.49	0.47
Scenario 2	0.54	0.49	0.83	0.76 -
Scenario 3	0.32	0.23	0.42	0.28 -
Scenario 4	- 1.93	1.93	1.93	1.93 -

Automotive	Aviation	Maritime
0.3 - 0.8	0.25 - 0.75	>1

Thank you for your attention!

Questions?

David Wennberg, Lic. Tech. KTH Center for ECO² Vehicle Design <u>davidwen@kth.se</u>