

International Rail Technology Consultants

Taming the beast: Vehicle dynamics simulations on a 32 axle Schnabel car

> Lars-Ove Jönsson & Nils Nilstam Interfleet Technology AB

17th Nordic Seminar on Railway Technology Tammsvik 2012-10-03 – 2012-10-04

Background

ABB in Ludvika A world center of high voltage

© ABB Group November 30, 2011 | Silde 3 ABB

Transport Task

Get the transformers from the production plant in Ludvika to the shipping ports. \sim 60-80 transports/year

The beast: Uaai-xxy, also known as Q73

Interfleet Technology

Main data Uaai-xxy (Q73)

Main data for Uaai-xxy (Q73):

- Design:
- Year of manufacture:
- Length:
- Tare load:
- Maximum payload:
- Number of axles:
- Maximum speed:
- Owner:

Norca Machine Corporation, U.S.A 1973 73 meters 230 tonnes 500 tonnes 32 30 km/h loaded, 60 km/h tare ABB

The Challenge: BIGGER transformers

Wider:

• Extra bracket for sideframe

Higher:

• Rubber cover for insulation of overhead line

Longer:

• Increase length of sideframe

Simulation model

(Note: Videoclip was shown in presentation)

Interfleet Technology

Simulation model, main data

Eile View Stou Help	Time: 🗍 0,00
Task: calculate dynamic loads on sideframe	

Main data:

- 50 masses
- 313 couplings
- 288 degrees of freedom
- MBS tool: Gensys

Simplified wheel-rail contact model:

- Wheelset follows track centre line
- Vertical forces correct, wheel lift is possible

Simulation model, track data

Measured track data, track geometry as well as track irregularities example:

Geometric trackplane acceleration on the line La-Stl km 71-80, v= 30 km/h

Design feature: side supports

Design feature: reduced pivot

Pivot mechanism in curves

Design feature: lateral load displacement

Lateral load displacement

Lateral load displacement

Example: simulations of forces in load displacement

(Note: Videoclip was shown in presentation)

Example: simulation on measured track

(Note: Videoclip was shown in presentation)

Summary

Present task:

- Calculated load collective of internal forces for dimensioning of sideframes, based on real track input data
- Taking into account most unfavourable transformer load, offset centre of gravity
- Simulated Schnabel beam assembly with torsional flexibility

With this model it is also possible to make detailed analysis of:

- Track stresses
- Vehicle dynamic safety, track forces
- Gauging

Interfleet wish to thank ABB Power Transformers for kind permission to share this information

Bottom line

Do you have this:

? (or another vehicle)

Then we can make this:

International Rail Technology Consultants

