

ROYAL INSTITUTE OF TECHNOLOGY Yi Zhu; Ulf Olofsson Department of Machine Design; KTH Railway Group Royal Institute of Technology (KTH)

ROYAL INSTITUTE OF TECHNOLOGY

- Importance
- Influential factors: environment; third-body; material properties...
- Measures: friction modifier; lubricant; grinding

Rust and oxide layers

ROYAL INSTITUTE OF TECHNOLOGY

What is rust?

Rust is hydrated iron oxides. Iron oxides refer to anhydrous iron oxides.

	TABLE 1-PRO	PERTIES OF IRON ON	CIDES AND RUSTS	
Түре	MINERAL NAME	CHEMICAL NAME	Formula	COLOR
Anhydrous	Wustite	Ferrous oxide	FeO	Black
	Magnetite	Ferrosoferric	Fe,O,	Black
	Martite	Ferric oxide	Fe ₀ O	Black
	Hematite	Ferric oxide	alpha-Fe.O.	Orange Red
	Maghemite	Ferric oxide	Jgamma-Fe ₂ O ₃	Reddish Brown
Hydrated	Goethite	Ferric hydroxide	alpha-Fe.O.,H.O	Red-brown
(RUSTS)	Akaganeite	Ferric hydroxide	beta-Fe.O.H.O	Red-brown
	Lepidocrocite	Ferric hydroxide	gamma-Fe ₂ O ₃ .H ₂ O	Yellowish-Red- brown
	Feroxyhyte	Ferric hydroxide	delta-Fe_OH_O	Red-brown
	Xanthosiderite	Ferric hydroxide	Fe,O,2H,O	Red-brown
	Esmeraldite	Ferric hydroxide	Fe_O4H_O	Red-brown
	Turgite	Ferric hydroxide	2Fe,O,.H,Ó	Red-brown
	Limonite	Ferric hydroxide	2Fe ₂ O ₃ .3H ₂ O	Yellow to reddish
	Hydrogoethite	Ferric hydroxide	3Fe,O,.4H,O	Red-brown
	Ferrihydrite	Ferric hydroxide	5Fe,0,.9H,0	Yellow-brown

----D. Godfrey, "Iron oxides and rust in tribology", Technical paper, Journal of the society of tribologists and lubrication engineers 1999; 55(2); 33-37

ROYAL INSTITUTE OF TECHNOLOGY

Rusts on rails:

Different rusts and iron oxides on the rail can result in various friction coefficient causing stick-slip which leads to rail corrugations.

---M. Ishida, et. al, "Rail corrugations caused by low coefficient of friction in a submarine railway tunnel".

ROYAL INSTITUTE OF TECHNOLOGY

It was reported that β - Fe₂O₃·H₂O which is generated under the moist environment with the presence of chloride (Cl) has a great impact on reducing friction coefficient. A detailed surface treatment was also suggested.

---J. Suzumura, et. al, "In situ X-ray analytical study on the alteration process of iron oxide layers at the railhead surface while under railway traffic", Wear 271 (2011) 47-53

Two exposures:(pins and discs are made of wheel rail materials)

KTH KCTH
Re och konst er

	Group1 G1 (five cycles)	Group 2 for comparison G2 (five cycles)
Step 1	exposure in air for 0.5 h at 40 $_{\circ}C$ and RH> 90%	exposure in air for 2 hours at 40 $_{\circ}C$ and RH > 90%
Step 2	exposure in air for 0.5 h with 1% NaCl solution spray at 40 °C and RH> 90%	exposure in air for 6 hours at 40 $_{\circ}C$ and RH< 30%
Step 3	exposure in air for 1 h at 40 ${}_{^\circ}\text{C}$ and RH> 90%	
Step 4	exposure in air for 6 h at 40 ${}^\circ\text{C}$ and RH< 30%	

G1 exposure

ROYAL INSTITUTE OF TECHNOLOGY

G2 exposure

XRD X-ray diffraction analysis

ROYAL INSTITUTE OF TECHNOLOGY

Treatment	Conditions	Generated	Generated from ref.
Sprayed salt solution (1%) for half an hour	40°C, 2 hours with high humidity, 6 hours	α -Fe ₂ O ₃ ·H ₂ O γ - Fe ₂ O ₃ ·H ₂ O Fe ₃ O ₄ γ - Fe ₂ O ₂	α -Fe ₂ O ₃ ·H ₂ O β -Fe ₂ O ₃ ·H ₂ O γ - Fe ₂ O ₃ ·H ₂ O Fe ₂ O ₄
No salt solution	cycles	γ - Fe ₂ O ₃ ·H ₂ O	$\alpha - Fe_2O_3 \cdot H_2O$ $\gamma - Fe_2O_3 \cdot H_2O$ Fe_3O_4

環境	条件	発生さび		
	短時間 4.5hr	-	-	¥ FeOOH
純水噴熱	(short)	-	_	_
	長時間 20d	α Fe00H	-	∦ FeOOH
(H ₂ O)	(long)	F e 304	- .	_
	長時間噴霧後加熱	-	_	
	(heat)	Fe304	ØFe2O3	-
3%NaCl 水溶液噴霧	短時間 4.5hr	-	βFeOOH	v FeOOH
	(short)			_
	長時間 20d	Ø FeOOH	βFeOOH	ĕFe00H
(NaCl)	(long)	.		am.FeOOH
	長時間噴霧後加熱			
	(heat)	Fe304	αFe 2O3	-

---K. Ohno, Y. Ogawa, RTRI Rep., No. A-83-70, 1983

Pin-on-disc testing:

Friction results:

In one of the tests, interesting results are observed!

G2 exposure (thin oxide, 10°C):

More tests are done with regard to different levels of humidity: On the thin oxide specimens at 10° C

[Ref] O. Hayashi et. al, Influence of atmospheric conditions upon adhesion between rails and running wheels, Nippon Kikai Gakkai Ronbunshu, C Hen/ Transactions of Japan Society of Mechanical Engineers, Part C 63 (606), pp. 566-571

ROYAL INSTITUTE OF TECHNOLOGY

Fig.3 Reference Rail Temperature with μ (Atmosphere Temp. 14°C, Humidity 70%)

Fig.4 Reference Rail Temperature with μ (Atmosphere Temp. 20°C, Humidity 55%)

Fig.6 Behavior of μ changed with the Running Distance of Test Truck under Various Humidity of the Atmosphere around the Running Surface of Rail (Atmosphere Temp. 28°C)

Discussion

1 for thick oxide specimens, μ is almost independent of lubricants (dry or water), especially at room temperature. The running-in process is also independent of the environmental conditions. These phenomenons are probably due to the extremely rough surface topography.

2 for thin oxide specimens, the running-in process lasts only for a very short while (< 2min, sliding distance around 1 meter) under dry condition. However, under wet condition, the running-in process lasts long.

3 thin oxide specimens are very sensitive to relative humidity.

Future work:

 more tests will be done for thin oxide specimens at various humidity levels; temperature levels.
surface analysis

Thank you for your attention!

ROYAL INSTITUTE OF TECHNOLOGY Yi Zhu yiz@kth.se