Experiences of measuring airborne wear particles from braking materials and wheel-rail contact

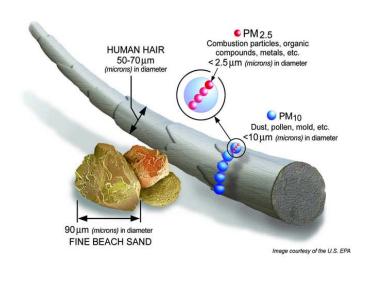
Saeed Abbasi (sabbasi@kth.se)

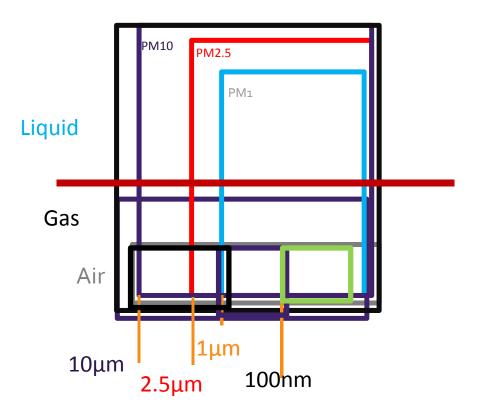
Ulf Olofsson

Ulf Sellgren

Outline

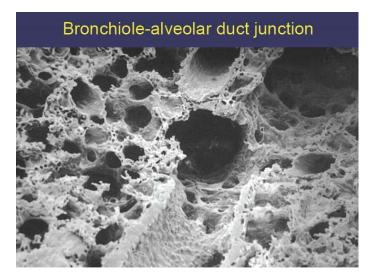
- Short review
 - □ Terminology
 - □ Negative effect on human health
 - □ Current condition
- Experimental works
 On-board measurement
 Sub-scaled test

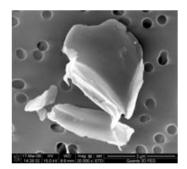

Terminology


- Particulate matter (PM10, 2.5, 1)

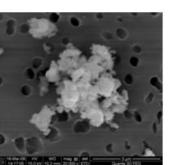
The Suspension of fine solids particles or liquid droplets or mixture of them in the gas or liquid -Coarse region ($2.5\mu m < dp < 10\mu m$)

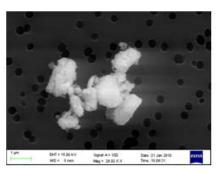
-Fine region (100 nm < dp <2.5µm)

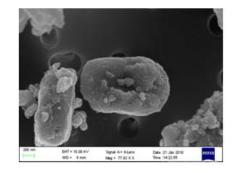

-Ultrafine region (dp <100nm)



Particles & health problems


Exposure Media Drug delivery Air Air, water, clothes Food, water Deposition Injection Inhalation Ingestion Respiratory tract Skin Uptake Pathways GI tract nasal bronchial alveolar neurons Lymph CNS Blood PNS (platelets, monocytes, endothelial cells) Liver Translocation and Distribution Lymph Other sites (e.g. muscle, placenta) Spleen Bone marrow Kidney Heart **Excretory Pathways** Sweat/exfoliation Breast milk Urine Feces





Confirmed routes
 Potential routes

PM & outdoor air quality

Typical PMC res (Differen	<i>PM</i> ₁₀ (μg m ⁻³)	<i>PM</i> _{2.5} (μg m ⁻³)	
Cairo	Daily (24 h)	938	
London	Daily (24 h)	1000-1500	270-480
Paris	Daily (24 h)	320	91
Stockholm	Daily (24 h)	357-500	199

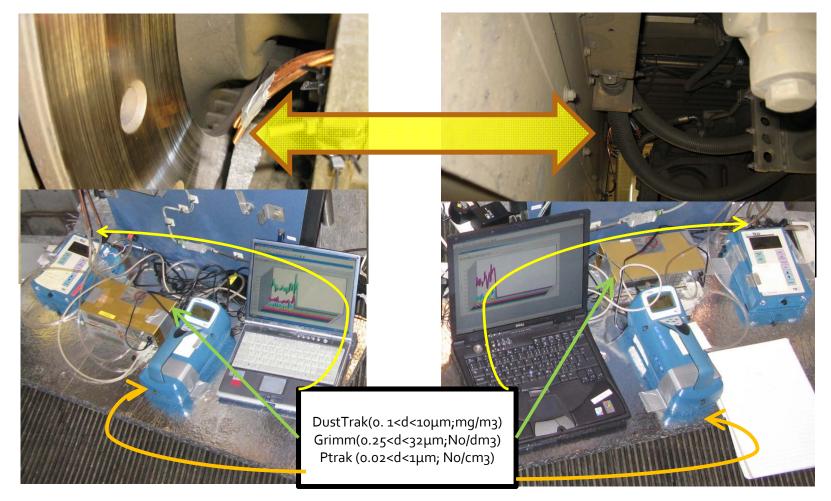
Typical PMC value in subway stations

PMC: particle mass concentration

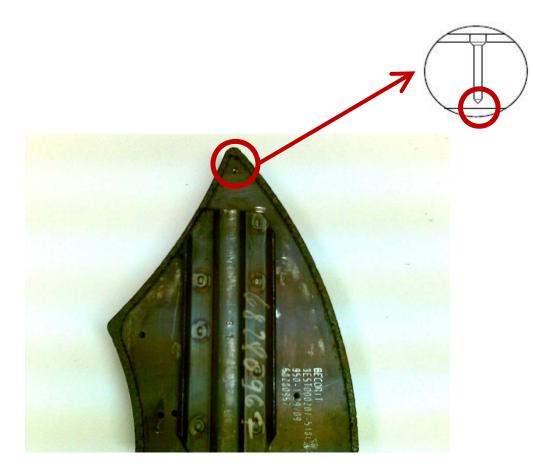
Typical PMC value in road transport

Source	PM _{2.5}	PM _{10-2.5}
		(Coarse)
Exhaust	73%	15%
Tyre	6%	11%
Brake	5%	31%
Road	5%	16%
Resuspnsion	N.A	27%

Abbasi *et al.* Particle emissions from rail traffic: A literature review, *Critical Reviews in Environmental Science and Technology*, In press.

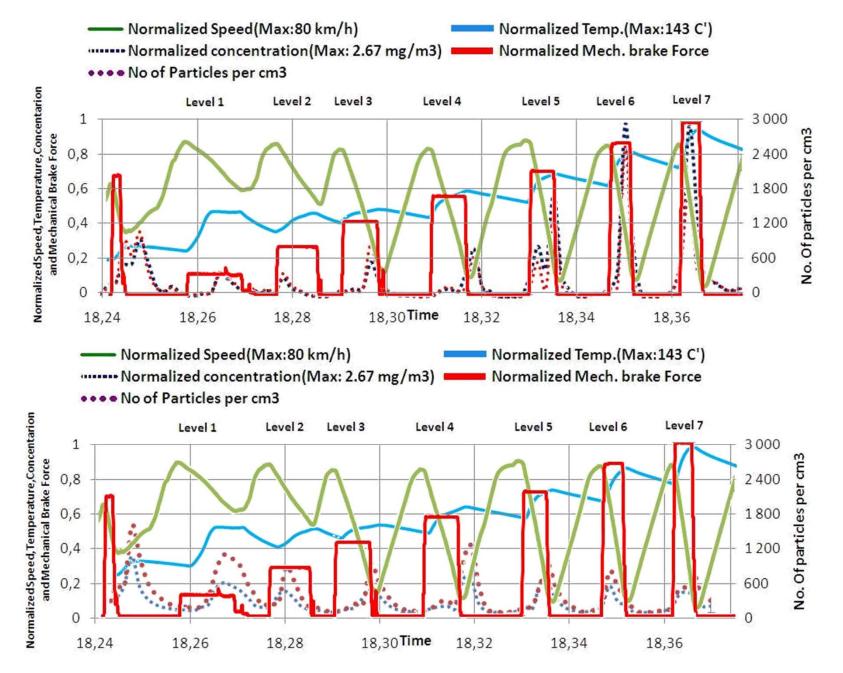

Outdoor air quality legislation

		<i>PM</i> ₁₀ (μg m ⁻³)	<i>PM</i> _{2.5} (μg m ⁻³)
US EPA ² website	Daily (24 h)	150	35
	Annual	-	15
EU directive 2008/50/EC	Daily (24 h)	-	50
	Annual	25	40

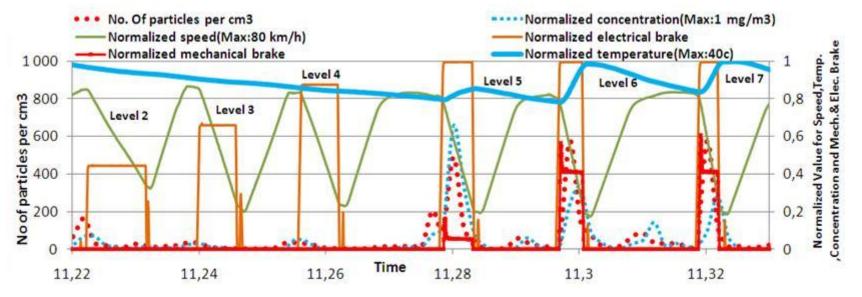

Particle measurement devices arrangement in an on-board experiment

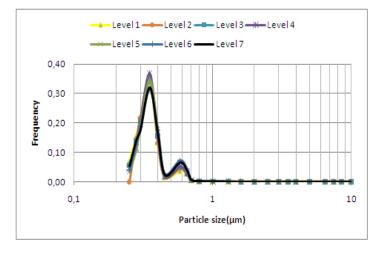
Sampling point 'Brake pad'

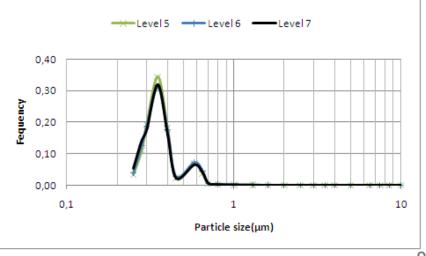
Sampling point 'Global '


Temperature Measurement in brake pad:

The distance between hole bottom and contact zone was 1 mm

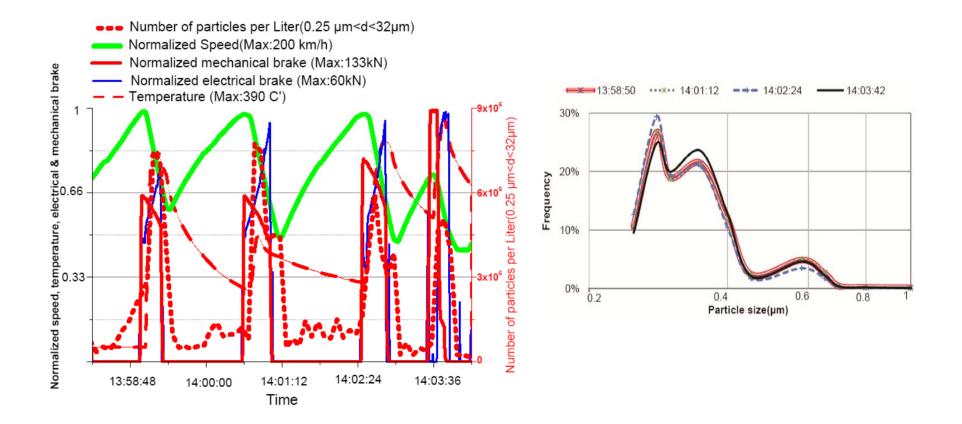



Recording particles in different brake levels:



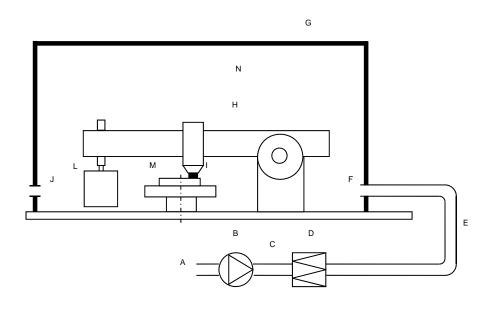
8

Recording particles in different brake levels: (Electro-magnetic brake activated)

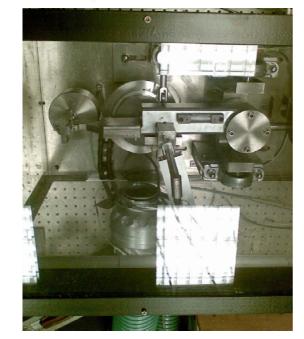


9

Recording particles in high temp. of brake pad :

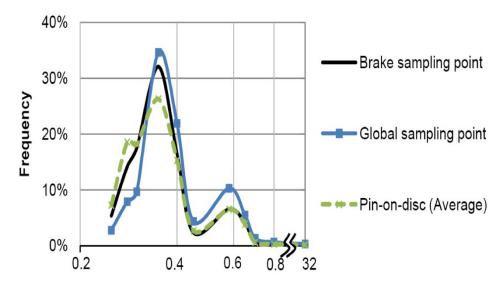


The comparative percentile weights of elements:

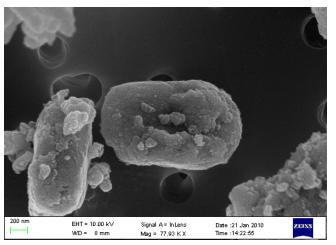

	Run	Fe	Cu	Zn	Ca	Mg	Al	Sb	Na	Ni	Mn	Ba	Cr
Brake Pad	1	65	10.1	4.4	2.9	2.2	1.8	1.4	0.5	7.1	0.6	2.6	0.8
🕈 Global	1	60.2	9.7	3.9	5	+ 4	5 .7	1.8	3 .2	1.1	0.6	0.2	1.2
Brake Pad	2	66.2	10.7	4.5	3.5	3.7	1.6	2.8	0.5	3.6	0.7	0.8	0.6
🕂 Global	2	63.9	7.4	3.1	5.3	4.8	5.3	2.3	3.4	0.6	0.7	0.3	0.6
Brake Pad	3	65.8	9.5	3.8	4.2	3.4	3.7	2.4	1.2	1.3	0.7	0.8	0.5
📕 Global	3	62.8	8.5	3.3	5.4	4.1	6	2.6	2.2	1	0.7	0.3	0.7
Brake Pad	4	64.7	9.9	3.9	4.9	4	2.6	2.9	1.6	0.7	0.7	0.4	0.7
🕂 Global	4	59	8.1	3	6	+ 4.9	+ 6	2.6	3.7	0.5	0.7	0.2	0.5
Notes: a. The amounts of b. The amounts of c. The percentile v	B, Be, Se, O	Cd, P, S, Th,	and Tl w	ere unde	r the dete	ection limit	in all filt	ers in bo		ons.			
I. Regarding limitations of the ICP-MS method, C, F, O, H, and N were not investigated, so all presented percentile weights were comparative values. The unused Millipore filters contain Ca in addition to C, H, F, and O; the amounts of other elements in the filters were negligible. The filter composition has no effect on the results as the relative comparative weights were discussed.													
Composition has n F. The amounts of				-		-			s from the	e fourth ru	ın were dig	gested.	
g. Hydrofluoric ar	d nitric acio	ls were appli	ied to all f	filters in	the diges	tion proces	ss.						

Abbasi *et al.* A field test study of airborne wear particles from a running regional train. *Journal of Rail and Rapid Transit*, 226(1), 95-109, 2012

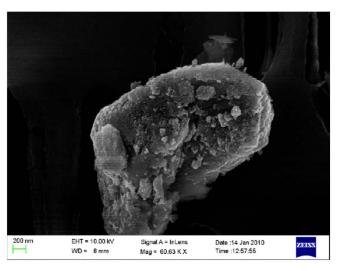
Sub-scaled laboratory test:



A: Room air; B: Fan; C: Flow rate measurement; D: Filter; E: Flexible tube; F: Inlet for clean air, measurement point; G: Closed box (Chamber); H: Pin-on-disc machine; I: Pin sample along with thermocouple; J: Air outlet, measurement points; L: Dead weight; M: Rotating disc sample, N: Air inside box, well-mixed;

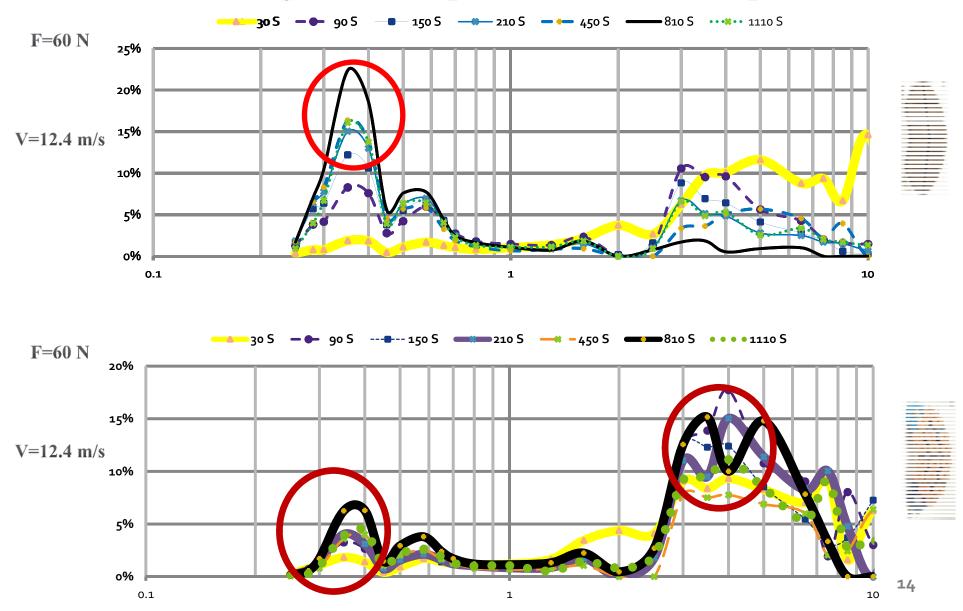


A Comparison between results:

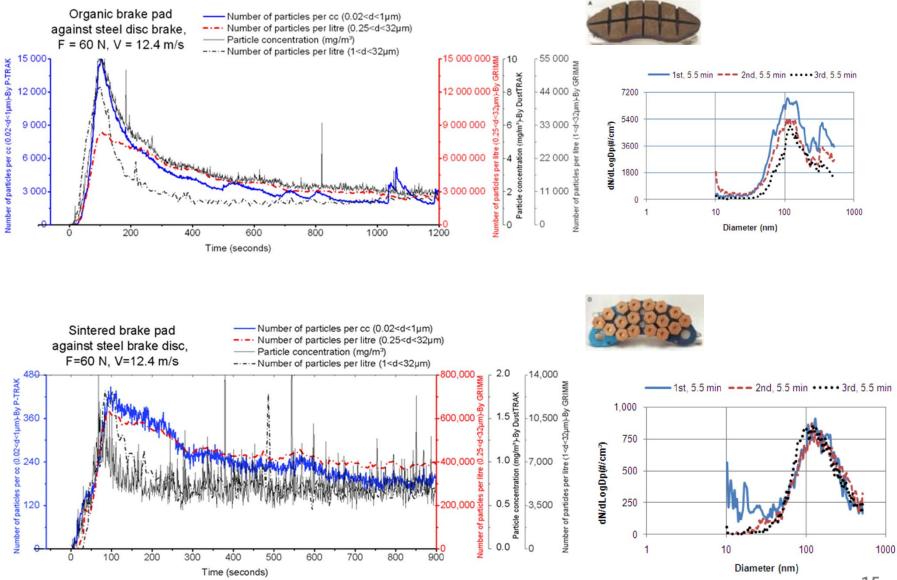


Particle size(µm)

Abbasi *et al.* A study of airborne wear particles generated from organic railway brake pads and brake discs. *Wear*, 273(1), 93-99, 2011.

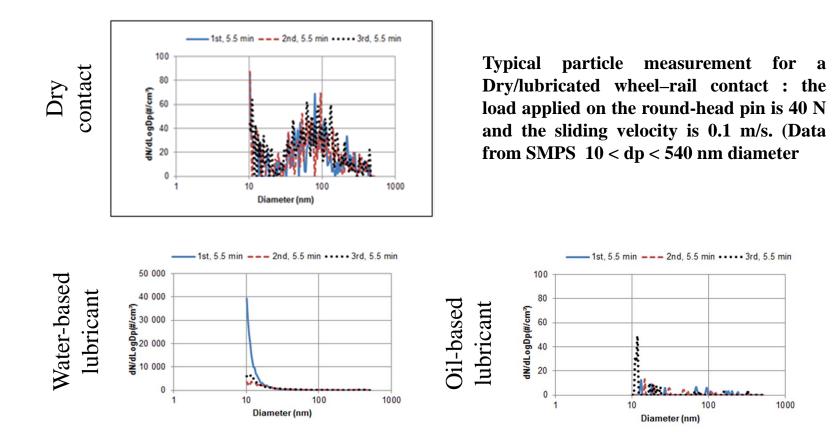


An image from a particle of pin-on-disc simulation.



An image from a particle of brake pad 13 sampling point filter.

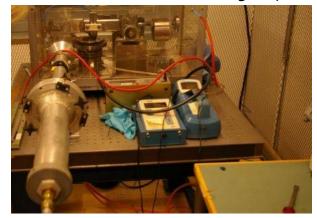
Time effects on the volume size distribution of the particles from organic brake pad & sintered brake pad

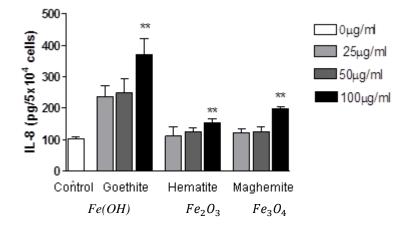

Organic brake pad & Sintered brake pad

Abbasi *et al.* A pin-on-disc study of the rate of airborne wear particle emissions from railway braking materials. *Wear*, 284-285, 18-29, 2012

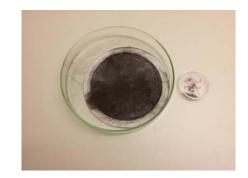
15

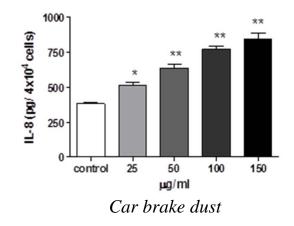
Effect of lubrication on fine & ultra fine particles in wheel-rail contact




Abbasi *et al.* Pin-on-disc study of the effects of railway friction modifiers on airborne wear particles from wheel–rail contact, *Tribology International*, In press

Cooperation toward Toxicological studies:


Swedish research defence agency



Department of applied environmental science at SU

References:

- Abbasi et al. A study of airborne wear particles generated from organic railway brake pads and brake discs. *Wear, 273*(1), 93-99, 2011.

- Abbasi *et al.* Particle emissions from rail traffic: A literature review, *Critical Reviews in Environmental Science and Technology*, <u>http://dx.doi.org/10.1080/10643389.2012.685348</u>

- Abbasi *et al.* A field test study of airborne wear particles from a running regional train. *Journal of Rail and Rapid Transit, 226*(1), 95-109, 2012

- Abbasi *et al.* A pin-on-disc study of the rate of airborne wear particle emissions from railway braking materials. *Wear, 284-285*, 18-29, 2012

- Abbasi *et al.* Pin-on-disc study of the effects of railway friction modifiers on airborne wear particles from wheel–rail contact, *Tribology International*, <u>http://dx.doi.org/10.1016/j.triboint.2012.11.013</u>