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A method for combining transaction- and valuation-based data in a property price index 

 

 

 

Abstract: This paper presents a method for combining transaction- and valuation-based 

data in a property price index. The methodology is devised for a world where observable 

transaction prices can be used to construct a price index that constitutes a noisy, unbiased 

signal of the ”true” price index. It is furthermore assumed that valuations can be used to 

construct a market value index which does not contain noise but that suffers from so called 

appraisal ”smoothing”. The valuation-based index is thus assumed to lag the ”true” value 

index and exhibit lower volatility. The model of the valuation-based index follows Geltner 

(1993). By regressing the transaction-based index on the valuation-based index 

(contemporaneous and lagged one period) it is possible to filter out the noise in the observable 

price index thus estimating the ”true” price index. The method may be seen as a way of ”de-

smoothing” a valuation-based index without knowing the smoothing parameter beforehand. 

The methodology may also be used as a way of estimating the smoothing parameter.  
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Introduction 

Price (or market value) indices for property markets are important for several reasons. 

Price indices are for example used as benchmarks by property owners and by investors as a 

means to compare average returns on property and alternative assets such as stocks and bonds. 

High quality price indices are also important in portfolio allocation decisions (indices can for 

example be used to calculate correlations between asset classes). Price indices are furthermore 

important in research on property markets. Research topics where price indices are used 

include property cycles and the relationship between property markets and other financial 

markets. 

Unfortunately it is not a simple task to construct property price indices of high quality. 

Two important reasons for this are that properties are heterogeneous - different properties 

have different characteristics (size, age, technical amenities etc) - and that properties are 

transacted seldom. This means that there exists relatively few observable property prices 

during a given time period on a given market and that those prices are not directly 

comparable.  

 The difficulty of constructing price indices is less severe for certain types of property. 

Single-family homes is an example of a property type with relatively many sales where those 

properties that are sold also are relatively comparable. For this property type it is therefore 

comparatively easy to design a reliable index. For commercial properties, on the other hand, 

there may exist only a few transactions in a given year and market. In these conditions it may 

be impossible to construct a reliable index.  

The difficulty of constructing an index is related to the level of aggregation. If the index 

is intended to capture the price level for properties in Europe we will most likely have enough 

transaction prices. This is likely also the case if we want to construct an index for Swedish 

offices. If we however want to construct an index for Stockholm CBD offices or single family 

homes in a particular parish of Stockholm there may not be enough data to construct a reliable 

index based on transactions. 

One way of circumventing the problem of low liquidity is to make use of valuations 

instead of transaction prices. This approach depends heavily on the quality of valuations. If 

valuations are inaccurate this may not be a reliable way of obtaining a price index. As an 

index is an aggregate of many observations, inaccuracy of individual valuations is not 

necessarily problematic. Errors may cancel out. There is however research that suggests that 

valuations of properties lag behind and underestimate the volatility of actual value movements 
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(Geltner et al. 2003). This valuation bias, popularly termed ”appraisal smoothing”, does not 

cancel out when valuations are aggregated (Geltner et al. 2003). 

This paper presents a method for combining transaction- and valuation-based data in a 

price index. The point of the method is to at least partly provide a remedy for inherent 

problems in the two types of data: noise in transaction data and smoothing in valuation data. 

The methodology is devised for a world where there are at least some observable transaction 

prices that can be used to construct a price index that constitutes a noisy signal of the ”true” 

price index (an index free of bias and noise). Furthermore, it is assumed that valuations from 

the population can be used to construct a noiseless but smoothed valuation index. This 

valuation index is a lagged, smoothed-out version of the ”true” index. By regressing the price 

index on the valuation index (contemporaneous and lagged one period) it is possible to filter 

out the noise in the observable price index and hence estimate the ”true” price index.    

 

The nature of price indication data in property markets 

An asset price index is an index that measures price movements in a population of 

assets. For some assets the construction of the index is fairly straightforward. For common 

stocks for example, we may simply collect price observations of every stock in the population 

for every time period, add them and divide by the price level in the chosen base period. Price 

data in property markets is generally not as easily transformed to a reliable index. For some 

markets there simply are too few transactions for this procedure to be feasible and when 

transaction data actually is available, heterogeneity of properties often makes it difficult to 

construct a reliable index.   

Unless we control for differences in property characteristics, transaction prices are not 

comparable. Transaction price A may differ from transaction price B because the two 

transactions occur at different points in time and prices have changed or because property A 

and B are of different quality (property B may have a nice view for instance). Unless we can 

control for differing quality, heterogeneity will introduce noise in observed transaction prices. 

Hence, an index constructed by taking the average of transaction prices will be noisy. Noise 

will pose less of a problem the more transaction data that is available.  

Heterogeneity may also introduce bias in an index. There are two reasons for this. First, 

the characteristics of properties may change systematically over time. If properties’ technical 

amenities are improved across a whole market for instance, we should observe price increases 
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due to quality improvement. For a given level of quality however, prices may have been 

constant. 

Second, properties of different characteristics may transact at different points in time. If 

high quality properties typically transact in certain time periods, failing to control for this may 

lead us to believe that prices have increased more than they actually have during these 

periods. Note that if we had continuous price data for every property, this would not be a 

problem. Heterogeneity and low liquidity thus together make it difficult to create indices. 

It should be noted that what we mean by bias may depend on what use the index is 

intended for. For some applications it may not be necessary or even desirable to control for all 

types of differences in characteristics. One may for instance want to construct an index for 

which depreciation and improvements are not controlled for. This is discussed in more detail 

by Wang and Zorn (1997).   

The fact that property markets are search markets is another source of noise in property 

transaction data. Transaction prices are the outcomes of negotiations between buyers and 

sellers. For any transaction the outcome of the transaction process is just one realization of 

many possible outcomes. The actual selling price can be viewed as a random variable 

distributed around the market value (where I think of the market value as the expectation of 

the selling price in a normal transaction, i.e. no forced sales for example). To exemplify, the 

price may end up below market value if the buyer has an exceptionally skilled negotiator at 

the negotiation.  

A substantial literature has addressed index construction methodology and has 

suggested solutions to the inherent problems. The repeat sales regression (first developed by 

Bailey et al., 1963) is a method for producing an index that compares prices of houses that 

have transacted at least twice during the period for which the index is constructed. The 

regression model is constructed so as to compare the transaction price for the same property at 

two (or more) transactions. The methodology thus at least in part avoids the problem of 

heterogeneity. 

There are three main problems with this type of index. First, the method requires plenty 

of transaction data and is therefore not feasible for many property markets. Only properties 

that have transacted at least twice during the index period can be used. Second, in its simple 

form, the method does not adjust for the fact that the properties in the index may change over 

time (depreciation, renovations etc). Later literature has suggested ways of dealing with this 

problem (Case and Quigley, 1991, is one example). Third, the method necessarily means that 

we build the index on properties that transact often (properties that have transacted only once 
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during the index period will not enter the regression). These properties may not be 

representative of the population. One study that investigates this problem is Englund et al. 

(1999). Their study shows that Swedish single family homes that are transacted often 

typically are of lower quality (small lots etc).   

Another way to design transaction-based indices that controls for differences in 

characteristics is to use a hedonic regression model. In the hedonic approach, a property is 

viewed as a composite good: When buying a property one is really buying a set of goods. The 

hedonic approach aims to find the marginal contribution of each of these goods or 

characteristics on the value of the composite good (in our case a property). This is achieved 

by regressing the transaction price of a property on a number of its characteristics (location, 

area, age etc).  By introducing time dummies in the regression, it is possible to capture the 

price level in different time periods while the included property characteristics control for 

heterogeneity. An alternative approach is to estimate a hedonic regression for each time 

period and revalue a representative property each time period using each respective period’s 

characteristics prices. Miles et al. (1990) and Webb et al. (1992) are examples of studies 

where a hedonic methodology is used.  

Clapp and Giacotto (1992) suggested an efficient way of controlling for heterogeneity 

among properties. They argue that valuations of each respective property provide an excellent 

heterogeneity control. Using valuations as a control for differing characteristics is an 

attractive idea for two reasons: They are likely to capture very much of the heterogeneity and 

they are fairly easy to obtain unlike other controls that may require collection of an extensive 

array of property attributes. Fisher et al. (2007) present a new quarterly index for  commercial 

property that uses this technique. As with repeat-sales methods the hedonic method is only 

feasible when there is plenty of data. For the hedonic approach not only transaction data is 

needed but also data on the characteristics of the properties in the index.  

A completely different approach to constructing price (or value) indices for property is 

to use valuations instead of observed transaction prices. A valuation-based index is 

constructed by revaluing the same sample of properties each time period. Valuation-based 

indices thus in part avoid the problem of heterogeneity. However, assuming that the properties 

in the sample change in quality over time, this should be taken into account. 

Using valuations as a means of tracking price (or value) movements hinges critically on 

the nature and quality of valuations. There is a fairly substantial literature that shows that 

valuations are prone to a certain type of bias. More specifically, a number of articles suggest 

that valuations tend to lag actual prices and also tend to smooth out actual price movements, 
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so called ”appraisal smoothing” (Geltner et al. 2003, Diaz and Wolverton 1998, Fisher et al. 

1999 and Fisher and Geltner 2000). This phenomenon can be shown to be the result of 

optimal valuer behaviour (Quan and Quigley, 1989 and 1991, Childs et al. 2002) but is not 

optimal from an index-construction point of view as smoothing in individual valuations is 

likely to spread to an aggregate index. If smoothing is present in valuations, an index based on 

valuations will simply not show actual price movements but movements in valuations. The 

phenomenon will be dealt with in some detail in the following. 

A valuer that tries to estimate the market value of a property uses transaction prices 

from properties that are as comparable as possible to the property that is being valued. Ideally 

these comparable sales (comps) should (1), come from properties that are identical to the 

property being valued, (2), the transactions should have occurred very recently (ideally at the 

same moment that we are making the valuation) and (3), we should have access to plenty of 

them. This will typically not be the case as properties are heterogeneous and transact seldom. 

The valuer will have to make do with less perfect data. The data that is available to the valuer 

will contain noise (due to heterogeneity) and it will not be completely up to date (old 

transactions). We can think of the value estimate as a simple average of the transaction prices 

from comparable sales. If we use only very recent comps the value estimate will be up to date 

but noisy due to the fact that we have very few comps in the average, perhaps only one 

comparable sale. As we include older and older comps the number of comps in the average 

will be larger reducing the effect of noise. The value estimate will however be less up to date 

the farther back in time we go. Thus there will be a trade-off between noise and bias 

depending on how far back the valuer decides to go. Using only recent comparable sales will 

give an estimate that contains a lot of noise but very little bias. Using comparable sales from a 

longer time period will result in less noise but more bias. 

How far back it is optimal to go depends on what use the valuation is intended for. If we 

aim for as small error as possible in the individual value estimate it may be optimal to go 

quite far back as this will reduce the noise. If we want to have an estimate with as little bias as 

possible it may be optimal to use only very recent comps. If we want to value an entire 

portfolio of properties for example it is arguably better to have unbiased but noisy estimates 

of the individual properties as noise will filter out in the aggregate. 

This description of the valuers problem is simplified (valuations are usually not simple 

averages of comps) and is meant to give an intuitive explanation for appraisal smoothing. The 

general idea is that valuers use old information and that this behaviour is justified. Quan and 

Quigley (1991) have studied the valuers problem more formally. They find that, given a 
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number of assumptions, it is optimal1 for the valuer to behave according to the following 

model: 

 

( ) 11it it it it itv p vα α −= + −     (1) 

 

Where vit is the valuation of property i in time t, pit are (noisy) contemporaneous 

comparable sales and vit-1 is the valuation in the previous period. αit is a parameter that tells us 

how much weight is given to current information relative to how much weight is given to old 

information. A large α it corresponds to much weight being given to contemporaneous 

information and vice versa. Note that previous valuations (vit-1, vit-2 etc) will follow the same 

model. It can easily be shown that formula (1) is simply a weighted average of the current and 

all previous comparable sales (i.e. pis where s=t, t-1, t-2,…..) with lower and lower weights 

the farther back we go (see formulas (16) and (17) below). αit is usually written without time 

or individual subscripts but they are included here in order to emphasize that alpha may differ 

over time as well as for different properties. 

An index based on valuations that follow the pattern in formula (1) will be smoothed. 

For many applications this is problematic and research has therefore been devoted to the 

question of how to derive unbiased price indices from valuation-based indices. Two groups of 

solutions are the ”zero-autocorrelation” method and the ”reverse engineering” method. The 

zero-autocorrelation method builds on the idea that returns in property markets should be 

unpredictable. Using this assumption it is possible to back out ”true” (non-autocorrelated) 

returns through a regression where autocorrelated return is filtered out. Once ”true” returns 

have been calculated these can be used to calculate ”true” price levels. Blundell and Ward 

(1987) proposed this technique and a number of articles have used and/or developed the 

method (Fisher et al. 1994, Cho et al. 2003 and Brown and Matysiak, 1998). The main caveat 

of the method is the problematic assumption of zero-autocorrelation in returns, which may not 

hold. 

The ”reverse engineering” method is related to model (1) and was proposed by Geltner 

(1993). Geltner (1993) argues that if individual valuations follow the pattern in formula (1), a 

valuation-based index will be well described by the following model:   

                                                 
1 It is optimal in the sense that if Vt is chosen in accordance with this formula, Vt will converge to the true 

market value of the property faster than any other simple linear valuation rule. 
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( ) 11t t tV P Vα α −= + −ɶ      (2) 

 

where Vt and Vt-1  are the valuation-based index levels at time t and t-1 respectively 

and tPɶ  is a price (or market value) index level at time t (the tilde is merely there to distinguish 

tPɶ  from a different price index Pt below). Note that Vt and Vt-1  are observable.  tPɶ  on the 

other hand is here regarded as a non-observable component of Vt. If (2) holds and if we know 

α it is possible to construct a price index by backing out (”reverse engineering”) tPɶ  from 

formula (2):  

 

( ) 11 tt
t

VV
P

α
α α

−−
= −ɶ      (3) 

 

(3) is just a simple manipulation of formula (2). Geltner furthermore argues that the 

noise in pit will largely diversify away in their aggregate counterpart tPɶ  so that tPɶ  may be 

viewed as a ”true” (unbiased, noiseless) price index. We may also assume that tPɶ  contains 

noise and employ some noise-reduction technique. 

The i subscripts have been dropped in formula (2) and (3) in order to emphasize that tPɶ , 

Vt and Vt-1 are measured at the index level in these formulas and that α when used in this way 

usually is assumed to be constant (an assumption that may not hold).  

One of the main problems with reverse engineering is that we must estimate α, which is 

inherently difficult as we do not have access to the ”true” price index and probably not the 

valuers’ comps (pit in formula (1)) either. One of the few studies on the subject is Clayton et 

al. (2001). The difficulty of obtaining α is aggravated by the fact that α may vary over time 

and over different properties (empirical support for this can be found in Brown and Matysiak 

(1998)) and that α on the individual property level not is necessarily immediately transferable 

to the aggregate (index) level (Bond and Hwang, 2007). 

So far we have discussed how both valuations and transaction prices are imperfect 

measures of price movements in property markets. There are however, other more indirect 

indicators of property prices. One prominent example is prices on stocks of listed property 

companies (or REITS). These prices refer to indirectly owned property which means that they 

cannot be used as price indicators for the direct property market without adjustment (or at 
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least not without caution). Property stocks are for example usually leveraged assets. This has 

to be taken into account as we usually create property indices for properties as such, not 

leveraged property holdings (which does not preclude that the properties in indices are owned 

by leveraged owners). Empirical research has also found that property stock prices move 

partly independently from the directly owned property market (Chau et al. 2001).  

Ling et al. (2000) and Fu (2003) are two examples of articles that present methods of 

using indirect indicators for computing price indices. Both articles make use of latent variable 

models. With this type of model it is possible to calculate an unobservable ”latent” variable 

with the help of a number of observable ”indicator” variables. Applied to property price 

indices, the latent variable is the ”true” value index while valuations and property stock prices 

may be used as indicator variables.  

 

Proposed index construction method 

In short, the setting is as follows. It is assumed that indications of current market value 

can be obtained from two sources; transaction prices and valuation data. The transaction 

prices are assumed to be unbiased estimates of market value but contain a lot of noise. The 

valuation data on the other hand is assumed to suffer from the effects of appraisal smoothing 

(lag, lower volatility). 

Assume that there are three indices in the market, two of them observable and one 

unobservable. First we have the unobservable ”true” price index, It, that we want to estimate. 

There is also a transaction-based index, Pt, which is built on noisy transaction price data. It is 

assumed that the price index Pt is dispersed around the ”true” market value index: 

 

Pt = It + ut        (4) 

 

Where ut is a random error distributed around the market value index and ( ) 0tE u = . ut 

is assumed to be uncorrelated with Is where s =…, t+2, t+1, t, t-1, t-2….. The variance of ut 

may differ in different time periods. In words, Pt is a noisy measure of It. 

Assume furthermore that we have a valuation-based index, Vt. This index is built on 

individual appraisals. The individual appraisals are assumed to follow the pattern discussed 

above (formula (1)). It is furthermore assumed that this pattern carries through to the index so 

that we have  
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( ) 11 −−+= ttt VIV αα ,    (5) 

 

where α is the smoothing parameter. In words, the valuation series Vt provides a 

”smoothed” but noiseless signal of It. Regarding the behaviour of It and Vt, the presented 

setting is the same as Geltner (1993). One could use ”reverse engineering” on the valuation 

based index Vt presuming that we have an idea of the value of α.  

After considering the set-up, the following question may arise: Why does the price 

index Pt contain noise while the signal of ”true” value in the valuation-based index does not? 

In the presented set-up, the individual valuation is built on noisy price information and the 

previous valuation, but when we combine valuations in an index, the noise in the price 

information filters out. Why can we not simply collect the price information that valuers use 

and create a transaction-based index free of noise? The noise filters out in the valuation-based 

index – why not in the transaction-based index? 

The set-up implicitly assumes that the price information that valuers have access to is 

richer than the price information available to the person constructing the index. This requires 

some motivation. First of all, the information available to valuers may be costly or impractical 

for the index-constructor to acquire. It may for example be the case that the data are not 

collected in one place or that the raw data needs extensive processing before use. Secondly, 

valuers may have access to information that simply is not available to the index-constructor. 

Some transaction prices may not be disclosed publicly but leak to valuers. Some transactions 

are part of a larger deal that includes other assets as well. In this type of deal the implicit 

transaction price of the property may not be known to the public but to valuers. Furthermore, 

the noisy price information that valuers use may not be actual transaction prices. Knowledge 

of deals that did not happen, rumours etc may be seen as part of the noisy price information 

used by valuers. Despite this argument one may argue that the ”true” price index component 

in (5) should include an error term. The effects of allowing for this are discussed in a 

subsequent section (equations (15) and (16)).   

Simulation (A) in Figure 1 shows visually how It, Pt and Vt relate to each other. In this 

simulation It is assumed to follow a random walk: 

 

ttt vII += −1      (6) 

( )1,0~ Nvt      (7) 
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It was constructed by generating 25 random numbers (vt) and then using formula (6). Pt 

was generated using formula (4) where ( )4,0~ Nut . Vt was constructed using formula (5). α 

was set equal to 0.4. The figure illustrates that Pt is a noisy (more volatile) version of It and 

that Vt is a smoothed (less volatile, lagging) version of It. 

-4

-2

0

2

4

6

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

It

Pt

Vt

 

Figure 1. Simulation (A) of a ”true” value index (It), an index constructed with observable 

transactions (Pt) and an index constructed with valuations (Vt). 

 

Equation (5) is equivalent to: 

 

( )
α
α

α
11 −−

−= tt
t

VV
I      (8) 

 

Equation (8) is a description of how It is related to Vt and Vt-1 where It is expressed as a 

linear function of Vt and Vt-1. Of course, It is not literally driven by Vt and Vt-1. (8) merely 

shows how variation in It can be captured with Vt and Vt-1 if we assume that equation (5) 

holds. Assuming that we can observe the three variables we could estimate (8) by OLS. If we 

were to regress It on Vt and Vt-1 we would be able to capture all variation in It since It only 
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”depends” on Vt and Vt-1. The coefficient for Vt would equal 1/α  and the coefficient for Vt-1 

would equal ( )1 /α α− − . If we included an intercept in the regression it would equal zero. I 

use the word depend here in the sense that the variation in It can be captured by Vt and Vt-1.  

Now, we can observe Vt and Vt-1 but not It. We can however observe Pt which is just a 

noisy measure of It:  

 

( )
t

tt
t u

VV
P +

−
−= −

α
α

α
11

    (9) 

 

I have simply inserted the right-hand side of equation (8) instead of It in equation (4) in 

order to arrive at (9). Model (9) is possible to estimate since we have assumed that Pt and Vt 

are observable. We would then run the following regression model: 

 

0 1 2 1t t t tP V V eβ β β −= + + +     (10) 

 

where we know from (9) that the true parameters are0 0β = , 1 1/β α= , 

( )2 1 /β α α= − − and that t te u= . Assuming that ut is uncorrelated with Vt and Vt-1 the 

coefficients for the explanatory variables will be unbiased. In other words, their expected 

values are their respective true population counterparts: 

 

( )0
ˆ 0E β = ,      (11) 

( )1̂ 1/E β α= ,      (12) 

( ) ( )2
ˆ 1 /E β α α= − −     (13) 

 

We can obtain predicted Pt: 

 

1210
ˆˆˆˆ

−++= ttt VVP βββ     (14) 

 

The expected value of tP̂  given Vt and Vt-1 is: 
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( ) ( )112101 ,ˆˆˆ,ˆ
−−− ++= ttttttt VVVVEVVPE βββ    (15) 

                   1210 −++= tt VV βββ      

                   
α
α

α
1)1( −−−= tt VV

 

                   tI=  

In words, predicted Pt is an unbiased estimate of It. As the number of observations 

increases, the coefficients are better and better estimated and the predicted Pt will come closer 

and closer to It. 

Figure 2 shows simulation (B) which is similar to simulation (A) in Figure 1 but in 

which I have also included tP̂  which is predicted Pt from a regression where Pt is regressed on 

Vt and Vt-1 (regression model (10)). As is evident from the figure, the predicted Pt comes close 

to It. 
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Figure 2. Simulation (B) of a ”true” value index (It), and an estimation of It (predicted Pt) using 

transactions-based and valuation-based indices. 
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We do not actually have to assume that ut is uncorrelated with Vt and Vt-1. It follows 

from previously made assumptions: (i) the assumption that ut is uncorrelated with It in all time 

periods and (ii) the assumed model of the appraisal-based index, equation (5). To see this, 

note that equation (5) implies that Vt can be expressed as a function of the current and lagged 

values of It. We have (equation (5) restated): 

 

( ) 11 −−+= ttt VIV αα      (16) 

 

Insertion of ( ) 21 1 −− −+ tt VI αα  instead of 1−tV , ( ) 32 1 −− −+ tt VI αα  instead of 2−tV  and so 

on yields:  

 

( ) ( ) ( ) ....111 3
3

2
2

1 +−+−+−+= −−− ttttt IIIIV ααααααα   (17) 

 

Equation (17) shows that Vt is a function of Is where s = t, t-1, t-2…. which are all 

uncorrelated with ut by assumption. Hence, ut is uncorrelated with Vt. The same argument 

holds for Vt-1. 

The reader may object that estimating Pt on Vt and Vt-1 results in biased coefficient 

estimates due to simultaneity (the argument might be that prices drive valuations, not the 

other way round). Then we have to remember what we are trying to achieve with regression 

equation (10). The point of the regression is not to test a causal relationship. The point is 

instead to reduce the noise in the Pt observations (or to get rid of the lagging/smoothing 

behaviour in Vt if you will). β1 and β2 should not be thought of as measuring causal effects but 

rather the linear relationship between Pt, Vt and Vt-1. We know from the assumptions that we 

have made that this relationship follows formula (9). 

How can valuations completely capture ”true” price movements in this setting? In order 

to give an intuitive explanation why this may be the case let us start with the basic model of 

how valuations relate to the ”true” price: 

 

( ) 11 −−+= ttt VIV αα      (18) 

 

The formula shows that Vt contains both the ”true” price It scaled down by a factor α 

and the previous valuation Vt-1. Thus, by scaling up the ”true” price component and getting rid 
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of the Vt-1 component we have the ”true” price. This is exactly what happens when we regress 

Pt on Vt and Vt-1. From above (equation (15)) we have that: 

 

( ) 1
1

(1 )ˆ , t t
t t t

V V
E P V V

α
α α

−
−

−= −     (19) 

 

The first term in this expression may be thought of as the term that scales up the It 

component of Vt. To see this note the following: 

 

 
( )( )

( )
1

1

1
1

1

t
t t

t
t

V
I V

V
I

α α
α α

α
α

−

−

= + − =

−
= +

    (20) 

 

Subtracting the ”previous-valuation-component”, 1(1 ) tVα
α

−−
, from tV

α
 we get:  

( ) ( )1 11
1 1(1 ) t tt t

t t

V VV V
I I

α αα
α α α α

− −− − −−− = + − =   (21) 

      

 

Relaxing assumptions 

The proposed method relies on a number of assumptions. If these assumptions are 

fulfilled, the index construction method works well in the sense that it produces an unbiased 

estimate of the ”true” index series. Of course, the assumptions may not be fulfilled or at least 

may not be completely fulfilled. The rest of the paper discusses how the results are affected if 

the assumptions are not fulfilled. 

Price process 

In the presentation of the methodology, the process of the ”true” price index was not 

discussed and no assumptions were made about what it looks like. In other words, the index 

construction method is not dependent on a particular process of the ”true” price. Simulation 

(C) was made to illustrate this. It is assumed to follow an ARMA(1,1) process: 
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115.0 −− ++= tttt vvII     (22) 

( )1,0~ Nvt      (23) 

 

Vt and Pt are constructed in the same way as in simulation (A) and (B) but α is assumed 

to be 0.3 in this simulation. 
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Figure 3. Simulation (C) of a ”true” value index (It), and an estimation of It  (predicted Pt) using 

transactions-based and valuation-based indices. It is assumed to follow an ARMA(1,1) process. 

 

As in simulation (B), predicted Pt follows It closely: the methodology is not sensitive to 

the process of the ”true” price index. The simulation serves a second purpose. In this 

simulation, 200 observations were generated instead of 25 observations as in simulation (B). 

This means that when regressing Pt on Vt and Vt-1 in this simulation, coefficients are estimated 

with more accuracy. Consequently, predicted Pt follows It more closely than in simulation (B) 

illustrating the fact that the more observations, the better the proposed methodology works.   

Valuer model 

The assumption of how the valuation index behaves, equation (5), is explicitly used in 

the derivation of the index construction method. In general, therefore, the method does not 
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work unless this assumption holds. The method may however still work as an approximation 

even if equation (5) does not hold in a strict sense. Whether the approximation is reasonable 

or not depends on exactly how reality deviates from equation (5). As the true behaviour of Vt 

may deviate from equation (5) in countless ways it is impossible to give an exhaustive 

discussion of what happens when model (5) is invalid. This section will discuss some possible 

deviations.  

First, one may think of several models that share important traits with model (5) but 

deviate in some sense. Model (24) is one such example: 

 

( ) 221121 1 −− −−++= tttt IIIV αααα    (24) 

 

This model will lag the ”true” index and will smooth out its movements just like model 

(5). The difference between the models is the weights and the fact that model (5) goes further 

back in time. Model (24) is motivated for example if we think that valuers do not go as far 

back in time as suggested by model (5).   

A simulation was run where the ”true” price index is assumed to follow a random walk 

as in simulation (B), Pt is generated as in simulation (B) and Vt is now assumed to follow 

model (24) with weights chosen to be 311 2121 =−−== αααα . The results of simulation 

(D) are shown in figure 4. As expected, the results are not as good as in the previous 

simulations. The methodology does however not collapse completely. There is little lagging 

and much of the noise is eliminated. If we have more observations the results are even better. 

Simulation (D) was made with 25 observations. Appendix A shows the results when the 

simulation is made with 1000 observations. While the results for model (24) are encouraging, 

they cannot be generalized. Simulation (D) does however show that the methodology does not 

necessarily collapse if model (5) is not true.  
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Figure 4. Simulation (D) of a ”true” value index (It), and an estimation of It (predicted Pt) using 

transactions-based and valuation-based indices. Vt is assumed to follow model (24).  

 

 

An alteration to model (5) that makes sense intuitively is to assume that instead of It in 

model (5) we have I*t which is It plus random noise nt: 

 

( ) 11* −−+= ttt VIV αα      (25) 

 

ttt nII +=*      (26) 

The rationale for this model is that maybe not all of the noise from the individual 

valuations is filtered out when valuations are aggregated into an index. If (25) holds the true 

population model of Pt is: 

 

( )
tt

tt
t un

VV
P +−

−
−= −

α
α

α
11

    (27) 

 

It 
Pt 
Vt 
pred. Pt 
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If we regress Pt on Vt and Vt-1 when the true population model is equation (27) the 

coefficient estimates will be biased as Vt is correlated with the error term in equation (27). 

This can be seen from equation (25) and (26): Vt is a function of nt. In general therefore, this 

type of deviation from the assumptions is problematic. Three simulations were made in order 

to see how problematic. The simulations are all similar to simulation (B) except that Vt is 

constructed using formula (25) and (26). They differ between each other in how large the 

variance of nt is. Simulation (E) has the lowest variance of nt, 0.0625, which can be compared 

with each time periods innovation in It which has a variance of 1. When the variance of nt is 

this low the problem associated with this type of deviation is relatively small (see figure 5).  
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Figure 5. Simulation (E) of a ”true” value index (It), and an estimation of It (predicted Pt) using 

transactions-based and valuation-based indices. Vt is assumed to follow model (25) and the variance of 

nt is 0.0625. 

 

If the variance of nt is 0.5625 as in simulation (F) there are bigger problems as can be 

seen from figure 6. Appendix B shows the results when the variance of nt is 6.25. When the 

variance is this high, the predicted Pt follows Vt rather than It. This simulation is however not 

included as a practical example but rather to show that the estimate of Pt is biased towards Vt. 
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The results show that the effect of this type of noise depends critically on the variance 

of the noise.  
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Figure 6. Simulation (F) of a ”true” value index (It), and an estimation of It (predicted Pt) using 

transactions-based and valuation-based indices. Vt is assumed to follow model (25) and the variance of 

nt is 0.5625. 

 

Constant alpha 

The proposed model implicitly assumes that the smoothing parameter α does not 

change over time. Quan and Quigley (1991) showed in a theoretical model that α can be 

expected to be different in different market conditions. This is intuitively appealing since 

different periods exhibit differences in transaction volume and hence the number of comps 

that valuers can use. Brown and Matysiak (1998) show empirical evidence that α differs over 

time and circumstances. A simulation (G) was made in order to see what happens when α 

changes over time. In the simulation, α follows a simple process: for the first 13 time periods, 
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α is 0.4, for the latter 12 time periods α is 0.2. Except for the changing α the simulation is 

similar to simulation (B).  
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Figure 7. Simulation (G) of a ”true” value index (It), and an estimation of It (predicted Pt) using 

transactions-based and valuation-based indices. The smoothing parameter α shifts over time in this 

simulation. 

 

The simulation shows that the method is sensitive to changing α: For the first part of the 

index, true market movements are exaggerated while the opposite is true for the latter part. 

This stems from the fact that α is estimated at 0.3 or the average α over the time period. 

Consequently α is underestimated for the first half of the period and overestimated for the 

second half. This in turn has the effect that movements in It is exaggerated in the first half and 

the other way round in the second half. Simulation (G) has shown but one way in which α 

may change but has demonstrated that the method is sensitive to this assumption. A feasible 

remedy to this problem is to use a rolling regression technique.  
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Conclusion 

This paper presents a method for combining transaction- and valuation-based data in a 

price index. The point of the method is to at least partly provide a remedy for inherent 

problems in the two types of data: noise in transaction data and smoothing in valuation data. 

The methodology is devised for a world where the observable transaction prices can be used 

to construct a price index that constitutes a noisy signal of the ”true” price index. 

Furthermore, it is assumed that valuations can be used to construct a market value index 

which is a noiseless but smoothed version of the ”true” index.   

By regressing the observable price index on the valuation index (contemporaneous and 

lagged one period) it is possible to filter out the noise in the observable price index. If there 

are many observations, the predicted observable price index comes very close to the ”true” 

price index. The method may be seen as a way of ”de-smoothing” a valuation-based index. 

The advantage that this method gives compared to earlier de-smoothing techniques is that it 

does not require us to know the smoothing parameter beforehand. On the contrary, the 

methodology may be seen as a way of estimating the smoothing parameter.  

The paper discusses some of the assumptions made. It is shown that the method is 

insensitive to the ”true” price process. The model of the valuation index is a more crucial 

assumption but it is demonstrated that deviation from the model assumed is not necessarily 

critical. It is furthermore pointed out that over time varying smoothing of the valuation index 

is problematic. This may however be remedied by a rolling regression technique.   
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Appendix A 
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Simulation of ”true” value index (It), and estimation of It  (predicted Pt) using transactions-based 

and valuation-based indices. Vt is assumed to follow model (24). The simulation is based on 1000 

observations.  
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Appendix B 
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Figure 6. Simulation of a ”true” value index (It), and an estimation of It  (predicted Pt) using 

transactions-based and valuation-based indices. Vt is assumed to follow model (25) and the variance in 

nt is 6.25. 


