Biosensing with silicon photonics

Kristinn B. Gylfason
KTH Micro and Nanosystems
kristinn.gylfason@ee.kth.se
KTH – Micro and Nanosystems

IR cameras (www.flir.com)

IR bolometer

Silicon microneedles

Transdermal drug delivery systems

Photonic ring resonator biosensors

Lab-on-a-Chip

Polymer microfluidics

RF filter

RF switch

Micro fuel cell (www.myfuelcell.se)

MEMS 3D Integration

Medical MEMS

RF/Microwave MEMS

Energy & Actuators

Micro-Optics

Microfluidics Lab-on-Chip
Outline

- Why do we need biosensors sensors?

- Biosensor definition.

- The fundamentals of photonic waveguide based biosensing

- Silicon waveguides as biosensors.

- Liquid sample handling for photonic biosensors.

- Reducing temperature sensitivity.
Why do we need biosensors?

- When intruded by a disease causing virus or bacterium, the **body releases** biomolecules called **antibodies** into the blood.
- The antibodies attach selectively to a part of the intruder called **the antigen**, to label it for attack by the immune system.

Accurate disease diagnosis requires the measurement of the concentration of these antibodies.

- The concentration is very low (ng/ml), and there are other biomolecules in blood of much higher concentration (mg/ml).

By fixing an antigen on a biosensor surface, the attachment of antibodies can be measured with high selectivity.
More applications of biosensors

• Medical diagnostics
• Drug development
• Explosives and narcotics detection
• Environmental monitoring
Outline

• Why do we need biosensors sensors?

• **Biosensor definition.**

• The fundamentals of photonic waveguide based biosensing

• Silicon waveguides as biosensors.

• Liquid sample handling for photonic biosensors.

• Reducing temperature sensitivity.
What are biosensors?

Some commercial examples:

- Attana QCM: www.attana.com
- Corning EPIC: www.corning.com
- Biacore SPR: www.biacore.com
- Roche Accu-Chek: www.accu-chek.com

- In general, biosensors are devices to characterize a chemical quantity: the analyte
- Biosensors can be used to:
 - Determine analyte concentration
 - Study the kinetics of chemical reactions of the analyte
The formal definition of a biosensor

IUPAC\(^1\) definition:

“A biosensor is a self-contained integrated device which is capable of providing \textit{selective quantitative analytical information using a biological recognition element which is in direct spatial contact with a transducer element}.”

\(^1\)IUPAC: International Union of Pure and Applied chemistry
Analytes

- Biosensors can be used to study:
 - Ions: \(K^+ \), \(Cl^- \), \(Ca^{2+} \), ...
 - Gasses: \(CO_2 \), \(NH_3 \), ...
 - Sugars
 - Alcohols
 - Oligonucleotides (short single stranded DNA chains)
 - Various proteins and peptides: Antibodies, antigens
 - Viruses
 - and more ...
The fundamental idea of biosensing is using the work done by biological evolution to create highly selective biomolecular pairings.

Using one part of the pair as a recognition element allows selective measurement of the other part.

The biological recognition system provides selectivity and translates information from the biochemical domain (often an analyte concentration C) into chemical or physical output.

Biological recognition elements can be:
- Oligonucleotides (short single stranded DNA chains)
- Enzymes
- Antigens/Antibodies...
Biological recognition elements

- The biological binding reactions generally work only in water.

- This is a serious limitation for biosensors that are adversely affected by the viscous damping of liquids.

- For example: Resonating micromechanical cantilevers have shown mass detection limits of:
 - zeptograms (10^{-21}) in vacuum [1]
 - but nanograms (10^{-9}) in liquid [2]

Transducer elements

• The purpose of the transducer is to transform the output from the recognition system to a form suited for data analysis and storage (usually electrical).
• Often the output of the recognition system is a mass change (Δm) or a charge change (Δq).
• Most often these quantities are eventually translated to a frequency change (Δf) or a current change (Δi) of an electrical signal.
• Complete biosensors can thus be described by their transduction chains. For example:

$$\Delta C \Rightarrow \Delta q \Rightarrow \Delta i$$

or

$$\Delta C \Rightarrow \Delta m \Rightarrow \Delta f$$
Classification of biosensors

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Recognition</th>
<th>Transduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ions</td>
<td>Enzymes</td>
<td>Electrochemical</td>
</tr>
<tr>
<td>Dissolved gasses Vapors</td>
<td>Enzymes Antibodies Receptor proteins</td>
<td>Electrochemical Piezoelectric Optical</td>
</tr>
<tr>
<td>Substrates (molecules upon which enzymes act)</td>
<td>Enzymes Membrane receptors Whole cells Plant or animal tissue</td>
<td>Electrochemical Piezoelectric Optical Calorimetric</td>
</tr>
<tr>
<td>Antibody/Antigen Virus</td>
<td>Antigen/Antibody</td>
<td>Electrochemical Piezoelectric Optical Surface plasmon</td>
</tr>
<tr>
<td>Various proteins</td>
<td>Receptor proteins</td>
<td>Electrochemical Piezoelectric Optical Surface plasmon</td>
</tr>
</tbody>
</table>
Outline

• Why do we need biosensors sensors?

• Biosensor definition.

• The fundamentals of photonic waveguide based biosensing

• Silicon waveguides as biosensors.

• Liquid sample handling for photonic biosensors.

• Reducing temperature sensitivity.
Interaction of light and matter:
Wavelength change (refractive index)

Speed of light in vacuum: \(c \)
Wavelength in vacuum:
\[
\lambda_0 = \frac{c}{f}
\]

In water light slows down to \(v' \)
Wavelength in water:
\[
\lambda' = \frac{v'}{f} = \frac{\lambda_0}{n_w}
\]

Wavelength in a biomolecule solution: \(\lambda'' = \frac{\lambda_0}{n_s} < \lambda' \)

\(n \) is the material's refractive index
Waveguides for light control, by microfabrication

$n_c > n_b > n_s$
Guided wave propagation

Electric field \((E_y)\) of the light wave in the A-A’ cross-section

- Liquid sample
 - \(n_s\)
- Core
 - \(n_c\)
- Bottom cladding
 - \(n_b\)

\[\lambda = \lambda_0/n_{\text{eff}} \rightarrow \text{Effective refractive index of waveguide} \]

\[n_{\text{eff}} = f(n_b, n_s, n_c) \]
Evanescent field based biosensing with photonic waveguides

- Cross section along guide
- Electric field of the propagating light wave
- Biomolecule binding

Increased wg. effective index:

$$\Delta \lambda / \lambda = \Delta n_e / n_e$$
Photonic waveguide circuits for $\Delta \lambda$ read out

- The transduction chain of a photonic biosensor is:

 $\Delta C \rightarrow \Delta m \rightarrow \Delta n \rightarrow \Delta \lambda$

- We need to read out $\Delta \lambda$.
- Lithography enables fabrication of functional photonic circuits.
- The **directional coupler** permits nearly lossless splitting and combining of light.
Ring resonators for $\Delta \lambda$ read out

- Off resonance \Rightarrow Most of light transmitted
- On resonance \Rightarrow Light coupled to ring \Rightarrow Transmission minimum
- Surface binding \Rightarrow n_e increase \Rightarrow Resonance wavelength increase: $\Delta \lambda_0$

Light in at free space wavelength λ_0

$m = 10$

Transmitted light to detector

$\lambda_0 \rightarrow \lambda'_{0}$

New transmission spectrum of ring

$\frac{m \lambda_0}{n_e} = 2 \pi R$

Surface binding

$\frac{m \lambda_0}{n_e} = 2 \pi R$ fixed

Transmitted light to detector

Directional coupler

$R=70 \ \mu m$

Light in

Light out

Ring resonator
Ring resonator sensing fundamentals

Quality factor

\[Q = \frac{\lambda}{\Delta \lambda} \]

The Q limits the achievable sensor resolution.

Volume sensitivity

\[S_V = \frac{\partial \lambda}{\partial n} \]

Resonance wavelength shift per refractive index unit change of top cladding.

Surface sensitivity

\[S_S = \frac{\partial \lambda}{\partial \sigma} \]

Resonance wavelength shift for surface density change of surface coating.
An example ring resonator biosensor chip

Biosensor cartridge

Ring resonator transducer

Antigen-Antibody pair

Optical sensor array

Light in

Light out

750 µm

70 µm

1 µm

Layout of sensor array optical circuit

Grating coupling

Integrated optical components

Waveguide

Ring-resonator

Splitter

Grating coupler
Waveguide cross-section

A-A'

Strip waveguide

Slot waveguide

Evanescent wave

Increased light-analyte interaction

Time average of optical power through cross section
(TM, λ=1310 nm)

(TE, λ=1310 nm)
Volume refractive index measurement of ethanol and methanol dilutions

Limit of detection:

\[
\text{noise level / sensitivity} = 5 \times 10^{-6} \text{ RIU}
\]

State of the art refractometers: 10^{-8} RIU
Selective surface bio-coating by spotting

Spotting robot

Spotting jets
Biological recognition components

Chip spotted with BSA

Not spotted
Spotted

Sensor M5
Sensor M6

Bus
Ring
Precipitated salt crystals on surface
Coupler
Biosensing

Outline

• Why do we need biosensors sensors?

• Biosensor definition.

• The fundamentals of photonic waveguide based biosensing

• Silicon waveguides as biosensors.

• Liquid sample handling for photonic biosensors.

• Reducing temperature sensitivity.
Biosensing with silicon waveguides

The high refractive index of silicon waveguides provide two benefits for sensing:

1. Rings can be made very small without reducing Q by bending loss,
2. The evanescent electric field at the silicon surface is very high, yielding high sensitivity for surface sensing.

![Graph showing the electric field intensity (|E|) for different materials](image)
Biosensing with silicon waveguides

Label-free detection limit of a few hundred molecules.
Multiplexing

Signal enhancement

Outline

• Why do we need biosensors sensors?

• Biosensor definition.

• The fundamentals of photonic waveguide based biosensing

• Silicon waveguides as biosensors.

• Liquid sample handling for photonic biosensors.

• Reducing temperature sensitivity.
Challenge: Cost-efficient microfluidic integration
Challenge: Cost-efficient microfluidic integration

- Minimize wafer footprint of microfluidics
- Bonding compatible with biofunctionalization
- Extendable to wafer scale
Off-Stoichiometric Thiol-Ene (OSTE) polymer technology enables new solutions for Lab-on-a Chip

- Tailor-made mechanical properties
- Patternable wettability
- Injection molding
- Photolithography
- Bonding to Si
- Compatible with biofunctionalization
OSTE: photolithography

Photolithography enables footprint efficient vias
OSTE: bonding

Bonding compatible with biofunctionalized surfaces

C.F. Carlborg et al. MicroTAS 2011
Fabrication: concept

TOP mold + photomask

Glass mask fabrication

Chromium patterns

SU8 reliefs

Molding and photolithography of OSTE

OSTE microfluidic layer

PDMS mold fabrication

BOTTOM mold

Dry bonding

1 step Si standard CMOS process

Integrated chip ready for photonic sensing

Silicon photonic chip
Fabrication: process

BONDING
DEVELOPMENT
30 s in Butyl acetate
13 s CURING
A biophotonic sensor with microfabricated sample handling system.
A biophotonic sensor example: Refractive index sensing
Refractive index sensitivity

S = 50 nm/RIU

Outline

• Why do we need biosensors sensors?

• Biosensor definition.

• The fundamentals of photonic waveguide based biosensing

• Silicon waveguides as biosensors.

• Liquid sample handling for photonic biosensors.

• Reducing temperature sensitivity.
Temperature sensitivity

- For practical biosensing we need to reach a detection limit of 10^{-6} RIU.
- Water has a thermo optic co-efficient of $\kappa_{H2O} = -1.1 \times 10^{-4}$ RIU/K.

→ Waveguide based biosensors normally need temperature control.

(SPR-BIAcore T100)
Athermal waveguides

Thermo-optic coefficients

\[\kappa = \frac{\partial n}{\partial T} \]

\[\kappa_{\text{H}_2\text{O}} = -1.1 \times 10^{-4} \frac{\text{RIU}}{K} \]

\[\kappa_{\text{Si}} = 2.4 \times 10^{-4} \frac{\text{RIU}}{K} \]

\[\kappa_{\text{SiO}_2} = 1.1 \times 10^{-5} \frac{\text{RIU}}{K} \]

Cross-section

Strip waveguide

- A-A'
- \(n = 1.3 \)
- \(\kappa < 0 \)

Slot waveguide

- \(n = 1.5 \)
- \(\kappa > 0 \)

Optical power

(TE mode, \(\lambda = 1550 \text{ nm} \))

If we can make

\[\frac{\partial n_{\text{eff}}}{\partial T} \approx \kappa_{\text{H}_2\text{O}} P_{\text{H}_2\text{O}} + \kappa_{\text{Si}} P_{\text{Si}} + \kappa_{\text{SiO}_2} P_{\text{SiO}_2} \]

\[P_{\text{H}_2\text{O}} \approx P_{\text{Si}} \Rightarrow \frac{\partial n_{\text{eff}}}{\partial T} \approx 0 \]

\(\Rightarrow \) Athermal waveguide

Athermal slot-waveguide design

Temperature dependence of effective index

Calculated with COMSOL Multiphysics® FEM mode solver
Evaluation circuit

Mach-Zehnder Interferometer

Slot-waveguide (Si)

Lower cladding (SiO₂)

Summary

• By fixing a receptor to a photonic sensor surface, antibodies can be measured with high selectivity.

• Biomolecules binding within the evanescent field of a sensing waveguide shorten the wavelength of light in the guide.

• Slot waveguides are good bulk sensors, marginal benefit for surface sensing.

• However, silicon slot waveguides enable athermal photonic biosensors.

• Cost-efficient microfluidic integration on silicon sensors challenging: OSTE
Outlook

• Silicon waveguide based photonic transducers already good enough for many practical applications.

• However, benefits over existing biosensors is not clear enough yet to make an impact.

• Improvements in microfluidics integration (pumping, filtering etc.) necessary to leverage the benefits of CMOS fabrication.

• Unique features for future exploration:
 - Low absolute mass detection limit.
 - Spatial resolution by sensor arrays.
Further reading

Apodized through-etched grating couplers for single lithography circuits

M. Antelius, K. B. Gylfason, and H. Sohlström,
"An apodized SOI waveguide-to-fiber surface grating coupler for single lithography silicon photonics,"
Grating design

Periodic grating optimization

Power ratio coupled into fiber

Maximum coupling at $(0.69, 0.8, 0.53)$

Power ratio reflected back into photonic circuit

$(0.69, 0.8, 0.2)$

Apodization

Power into fiber

Back reflected power

BOX thickness dependence

(b)

Design point $(2.2, 72)$

$\text{Coupling efficiency (power percentage into fibre)}$ [%] vs $\text{Buried oxide (BOX) thickness [µm]}$
Field profile in grating cross-section

Periodic through etched
- 21% back reflection
- 53% overlap with fiber mode

Apodized through etched
- 0.1% back reflection
- 72% overlap with fiber mode
Implementation and experiments