

## **Mechatronics Education at KTH**

(and Embedded Systems)

Martin Edin Grimheden KTH Royal Institute of Technology









# The Mechatronics program

| Year 1 (60 hp credits)                             |                                           |                                                                            |                            | Year 2 (60 hp credits)                                  |                                              |        |    |
|----------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------|----------------------------|---------------------------------------------------------|----------------------------------------------|--------|----|
| Fall                                               |                                           | Spring                                                                     |                            | Fall                                                    |                                              | Spring |    |
| P1                                                 | P2                                        | P3                                                                         | P4                         | P1                                                      | P2                                           | P3     | P4 |
| MF2070 Introduction to<br>Engineering Design (3hp) |                                           | free electives<br>(6hp)                                                    |                            | MF2071 Research Methodology in Mechatronics (4.5hp)     |                                              |        |    |
| free<br>electives<br>(9hp)                         | MF2042<br>Embedded                        | MF2007 Dynamics and Motion Control (9hp)  MF2044 Embedded Systems II (6hp) | free electives<br>(10.5hp) |                                                         | MF204X Master thesis project in Mechatronics |        |    |
| (311p)                                             | Systems<br>(6hp)                          |                                                                            | •                          |                                                         | (30hp)                                       |        |    |
| MF2030<br>Mechatronics<br>Basic course<br>(6hp)    | MF2043<br>Robust<br>Mechatronics<br>(6hp) | MF2058 Mechatronics<br>Advanced Course part 1<br>(6hp)                     |                            | MF2059 Mechatronics<br>Advanced Course part 2<br>(15hp) |                                              |        |    |

#### **Educational idea**

Production are outsorced outside Sweden, development tend to follow

Sweden has great opportunities for development of complex, knowledge-intensive products

 Requires non-hierarchical structures, high technical competence, creativity, innovation

We train leaders for the development of advanced products

- Who understands the technology, the development and the trends
- Who can create new products



Or

We like to build robots.



#### **Popularity**

KTH (Largest technical university in Scandinavia)

14 combined BSc+MSc programs (5 year degrees)

Mechanical Engineering, one of the largest and programs 17 "specializations" (=MSc programs)

Mechatronics Track is the most popular of these

| KTH VETENSKAP VETENSKAP | Preparatory courses<br>on BSc level | <ul> <li>Electrical engineering</li> <li>Mechanical engineering</li> <li>Control theory</li> <li>Programming</li> </ul>              |
|-------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Year 0                  | Semester 1                          | <ul> <li>Mechatronics basic course</li> <li>Embedded systems 1</li> <li>Robust mechatronics</li> <li>Research methodology</li> </ul> |
|                         | Semester 2                          | Dynamics and motion control                                                                                                          |
| Year 1 —                | Semester 3                          | Embedded systems 2                                                                                                                   |
|                         |                                     | <ul> <li>Mechatronics capstone course</li> </ul>                                                                                     |
| Year 2                  | Thesis project                      |                                                                                                                                      |



## The Robyt project – a dancing robot

## - as an example of a larger capstone project





## A typical capstone project



Design brief: Develop a product that actively simulates a lung and measures the output from a ventilator

#### A large company

- Competent and engaged staff
   Substantial budget
- Resources from company



# **Adaptive knee-prosthesis**











## **KTH Eco Cars**















## **Balances defining the subject**

Depth – Breadth

Knowledge – Skills

Academic – Industrial

Theory – Practice

General - Specific



## Legitimacy

Formal Functional

Requirements from the society/industry/...
For example, how the requirements are specified



#### **Identity**

Disciplinary

**Thematic** 

Characteristics of the subject, is it a discipline or a theme? What's the difference?

Hint: multidisciplinary areas, like mechatronics, typically starts as themes, such as robotics



#### **Selection**

Representation

Exemplification

What do we teach? Breadth or depth, a little of everything or everything of something

#### Communication

Active

How do we communicate/teach? Open-loop or closed-loop? Interactive also means that the selection of the subject is dependent on previous knowledge, skills



#### The Evolution of Mechatronics as an Academic Discipline





# Thank you

mjg@kth.se

