
1

KTH Research Concept Vehicle
Autonomous Path Following

Pontus Belvén, Johan Bjurgert, Anders Gidmark and Erik Hallqvist

Abstract—In this project, a framework for autonomous path
following is developed and evaluated both in real-time simulations
and in test drives with the KTH Research Concept Vehicle (RCV).
A Model Predictive Control (MPC) solution is used to compute
control signals to the RCV, using online linearization. The MPC
also allows for taking comfort criteria into account, which is used
in this project. The final controller was not able to be tested on
the real RCV due to time constraints, instead we present results
when we use a hardware-in-the-loop (HIL) simulation.

I. INTRODUCTION

IN the automotive industry, more and more emphasis
is put on autonomous systems which have become

feasible thanks to more efficient hardware. The benefits
are many, including safety, increased comfort and possibly
less ecological footprint. Autonomous driving requires path
generation and a suitable control to follow the generated path.

This project is a part of the Automatic Control Project
Course (EL2421) which also cooperates with the Vehicle
Dynamics Project Course Part 1 and 2 (SD2229/SD2230),
both at the Royal Institute of Technology. The goal of the
project is to make the KTH Research Concept Vehicle (RCV)
able to drive and follow a path autonomously. The group in
the Vehicle Dynamics Project Course have the task to make
a reliable model and state estimation of the RCV. Our task is
to use this model and state estimation to make a controller
which successfully follows a path, defined as checkpoints.

This report is structured as follows. Section II presents
related work in the area of autonomous path following.
Section III explains the dynamical model of the car and
the methods used to solve the autonomous path following
problem. The implementation is presented in section IV.
In section V the results are given and finally the report is
concluded in Section VI.

II. RELATED WORK

In the literature, practitioners seem to focus on either an
advanced controller while keeping the path generation simple
[1], [2] or using a simple controller while using optimized
paths [3], [4]. In [5], the authors construct an MPC using
a simple bicycle model. They use a nonlinear model and
linearize it during each time step such that the linearized
MPC is a Linear Time-Varying (LTV) system, using only the
front steering angle as an input.

An example of the other approach is [6], where the

Input Output
Vehicle Torque Movement
Sensors Movements Measurements
State Estimation Measurements Estimation of state
Path Generator Checkpoints Path
Path Planner Path and current state References
Controller References and current state Control signal
Actuator Control signal Torque

Table I
INPUTS AND OUTPUTS

Figure 1. The overall design of the controller.

idea is to construct optimal paths and use a decentralized PID
controller for steering and moment.

The benefit of using a more advanced controller is that
it allows for comfort criteria to constrain control actions,
which is desired in this project.

III. SYSTEM DESIGN

The overall design for the controller can be seen in Figure
1. The blocks’ inputs and outputs are explained in Table I.

A. Vehicle Model

A so called bicycle model [7] is used to model the RCV. It
is a simple model to give the essential information about the
dynamics of a vehicle, and consists of a wheel on the front
axis and one wheel on the rear axis. The states modeled by the
bicycle model are longitudinal speed vx, latitudinal speed vy ,
yaw rate ψ̇, yaw angle ψ and position in the global coordinates
(X,Y). The inputs to the bicycle model are torque on the front
and rear wheel M12 and M34, respectively, and the steering
angle of the front wheel δ12 and rear wheel δ34. The purpose
of the vehicle model is to use it both as the system model in

2

12F

34F

12,xF

34,xF

12

34



X

Y

vx

vy

lm FF 

bF

Figure 2. Bicycle model.

the MPC, and as the simulation model when doing the HIL
simulations. The bicycle model is described by the following
equations of motion

↑ (m+mj)(v̇x − ψ̇vy) = F34 sin(δ34)− F12 sin(δ12)

+ Fx,12 cos(δ12) + Fx,34 cos(δ34)

− Fm − Flv
2
x, (1a)

→ (m+mj)(v̇y + ψ̇vx) = F34 cos(δ34) + F12 cos(δ12)

+ Fx,12 sin(δ34)− Fx,34 sin(δ34)

− Fb, (1b)

Jzψ̈ = f(F12 cos(δ12) + Fx,12 sin(δ12))

− b(F34 cos(δ34)− Fx,34 sin(δ34)),
(1c)

where m is the mass of the vehicle, including two average
passengers, mj is the equivalent mass of the rotating parts,
and Jz is the inertia around the z-axis through the center of
gravity CG. Seen in Figure 2 are vx and vy , which are the
speeds in the x and y directions respectively, ψ is the yaw
angle, and f and b are the distances from CG to the front and
rear axles respectively. δ12 and δ34 are the steering angles for
the front and rear wheels respectively. The tire forces F12 for
the front tire, and F34 for the rear tire are given by

F12 = −C12α12, (2a)
F34 = −C34α34, (2b)

where C12 and C34 are the cornering stiffness of the front and
rear axle respectively. α12 and α34 are the slip angles of the
front and rear tires respectively and are given by:

α12 = tan−1

(
vy + ψ̇f

vx

)
− δ12, (3a)

α34 = tan−1

(
vy − ψ̇b
vx

)
− δ34. (3b)

Fm, Fb, are given by

Fm = mg sin(θ) + fr, (4a)
Fb = mg sin(φ), (4b)

where fr is the tire rolling resistance, θ is the road slope, φ is
the road bank, and g is the gravitational constant. Fl is given
by

Fl =
1

2
ρcairA, (5)

where ρ is the air density, cair is the aerodynamic drag
coefficient, and A is the projected frontal area [8], [9].

The equations of motion are used to calculate the state space
representation of the bicycle model and Ẋ, Ẏ , and ψ̇ are added
from [9]. The resulting state space model is

v̇x =
1

m+mj
(F34 sin(δ34)− F12 sin(δ12) + Fx,34 cos(δ34)

+ Fx,12 cos(δ12)− Fm − Flv
2
x) + ψ̇vy, (6a)

v̇y =
1

m+mj
(F34 cos δ34 + F12 cos δ12 − Fx,34 sin(δ34)

+ Fx,12 sin(δ12)− Fb)− ψ̇vx, (6b)

ψ̈ =
1

Jz
(fF12 cos(δ12)− bF34 cos(δ34)

+ Fx,12 sin(δ12) + b(Fx,34 sin(δ34)), (6c)

ψ̇ =

√
v2x + v2y(tan(δ12)− tan(δ34))

(f + b)

× cos

[
tan−1

(
f tan(δ34) + b tan(δ12)

(f + b)

)]
, (6d)

Ẋ = vx cos(ψ)− vy sin(ψ), (6e)

Ẏ = vx sin(ψ) + vy cos(ψ). (6f)

The control input u is given by

u = [M12 M34 δ12 δ34]
ᵀ
, (7)

where Fx,12 = M12/R is the amount of available force on
the front axle and Fx,34 = M34/R is the amount of force
available on the rear axle. M12 and M34 is the amount of
torque on the front and rear axle, respectively. R is the tire
rolling radius.

Values on all the parameters are obtained from [9], and can
be seen in Table II.

B. Path Generator

The path generator takes a manually defined map with
checkpoints and creates a path through the checkpoints in the
correct format for the path planner described in subsection
III-C. The path generator runs once during the initialization
of the controller; it gives a path with discrete points separated
by a euclidean distance dpath between subsequent points. The
path generator supplies speed references and also stop flags

3

Parameter Value
m [kg] 607
mj [kg] 40
Jz [kgm2] 1181
f [m] 1.1
b [m] 0.9
C12 [kN/rad] 2.6
C34 [kN/rad 2.6
g [m/s2] 9.82
fr 0.0175
ρ [kg/m3] 1.22
cair 1.3
A [m2] 2.25
R [m] 0.318

Table II
PARAMETERS

X [m]
0 20 40 60 80 100 120 140 160

Y
 [m

]

-80

-60

-40

-20

0

20

40

Examination Track

Path
Stopflags
Start

Figure 3. Examination Track

in the case of a stop light or stop sign on the path. It takes
an input which contains manually defined checkpoints and
translates these into a path. Each checkpoint is created to
define a change in position, speed reference and/or a stop sign.
It’s also possible to translate a set of GPS-coordinates to match
the input of the path generator. In Figure 3, is a track generated
from the path generator which is a recording of the track to
follow in the examination.

C. Path Planner

The path planner takes the path generated from the path
generator, subsection III-B, and the current estimation of the
position as inputs. At each iteration the path planner takes the
point on the path with the shortest euclidean distance to the
current position, as its position on the path. The path planner
then provides references for the path within the look ahead
distance, which is defined as the approximate distance traveled
during a number of sampling periods. This equation uses the
speed reference as the traveling speed, which is constant for
the whole track. The reference outputs are speed, position and
heading.

D. Controller

The aim for the controller is to follow the predefined
path closely, while at the same time fulfilling the comfort

Acceleration [m
s2

] Jerk[m
s3

]
Acceleration (longitude) [0, 1] [0, 0.5]
Braking (longitude) [-1, 0] [-0.5, 0]
Cornering (latitude) [-2, 2] [-1.5, 1.5]

Table III
COMFORT CONSTRAINTS [9]

constraints on acceleration, braking, and cornering, seen in
Table III [9]. Cornering is the latitudinal movement for the
RCV.

Since there are various constraints on both the control
signals and the state variables, we chose to use an MPC; it
solves an optimization problem during each sample time in
which it is simple to implement constraints.
The MPC takes a linear model, the current state and a
reference as inputs and computes the optimal control signal
according to the weights and constraints put in the MPC.
The optimization problem that defines the MPC is given in
(8), where f(x, u) is the non-linear continuous state space
model given in Eq. (6a) - (6f), Ts is the sampling time and Φ
and Γ describe the discretized and linearized f(x, u) around a
working point (x0, u0). W and Wu are positive semi-definite
weight matrices. The constraint (8b) describes how the system
evolves from one time step to another, we derive this system
further later in this subsection. In (8c) and (8d), we ensure
that some physical constraints on the states and controls are
followed, e.g. the speed has to be lower than some max speed
or a limitation on the maximum/minimum torque. In (8e), we
limit the change of the control signal from one sampling time
to the next.

To simplify our implementation of the MPC, we use only
two inputs; for torque we use M12 = M34 = M/2, where
M is the total applied torque; for the steering angle we use
δ34 = −δ12 = −δ, meaning our control vector can be written
as

u = [M δ]ᵀ. (9)

Now we will describe the linearization and discretization in
further detail.

1) Linearization: To linearize a non-linear continuous time-
invariant system

ẋ = f(x, u), (10)

around some working point (x0, u0), we perform the following
calculations.

ẋ = f(x0, u0)+ Jx|(x0,u0)
(x(t)−x0)+ Ju|(x0,u0)

(u(t)−u0),
(11)

where Jx and Ju are the Jacobian matrices of f(x, u) with
respect to x and u, respectively.

2) Discretization: When we have a linear time-invariant
system as in Eq. (11), we can discretize the system by solving
the system of equations under zero-order hold. Note that we
assume that there are no delays in the system.

x(k+1) = Tsf(x0, u0)+Φ(x(k)−x0)+Γ(u(k)−u0), (12)

where
Φ = exp

(
Jx|(x0,u0)

Ts

)

4

min
u

N∑
k=1

(x(k)− xref (k))TW (x(k)− xref (k)) + (u(k + 1)− u(k))TWu(u(k + 1)− u(k)) (8a)

s.t. x(k + 1) = Tsf(x0, u0) + Φ(x(k)− x0) + Γ(u(k)− u0), (8b)
xmin ≤ x(k) ≤ xmax, (8c)
umin ≤ u(k) ≤ umax, (8d)
uminrate ≤ u(k + 1)− u(k) ≤ umaxrate. (8e)

and

Γ =

∫ Ts

0

exp
(
Jx|(x0,u0)

τ
)
dτ Ju|(x0,u0)

.

3) Numerical weights and constraints: The weights for the
MPC are as follows:

W =


20 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 100 0 0
0 0 0 0 100 0
0 0 0 0 0 80

 , Wu =

[
0.1 0
0 0.1

]
.

(13)
We chose to put zero weight on vy and ψ̇ since we do not have
a reference for these states. We will have piece-wise constant
references for vx, and new X , Y and ψ references each sample
time. The lower speed weight in relation to the other weights
means that the MPC can lower or increase the speed to help
reach the target X , Y and ψ. Further, the constraints for the
MPC can be found in Table IV, all units are SI units. For the
control change constraints, we have set that |dM | ≤ 400Ts,
and a similar expression for dδ; this expression means that
during one second, M can change at most 400 Nm. A change
from full negative torque to full positive torque will thus take
2 seconds at least. To limit the acceleration, M is also limited
to |M | ≤ 400 Nm.

E. State Estimation

The states are estimated using an Unscented Kalman Filter
(UKF), which takes into account the system model and the
input from the sensors. Sensor inputs come from a three axial
accelerometer, a three axial gyroscope and a GPS. The details
are provided in [9].

IV. IMPLEMENTATION

A. Model and Vehicle Problems

The examination path contains two stops where the first is
a temporary stop, and the last the final stop. However, this
is not easily achieved due to two problems. Firstly, the only
method to autonomously break the vehicle is to reverse the
engines, which is not a very good method to get the vehicle to
a complete halt. Secondly, the model of the vehicle is unstable
when vx → 0. Because of these problems, there is no way to
get a simulation where the vehicle makes a complete stop at
a specific position. So for the simulation, the vehicle reverses
the engines using a PI controller with a reference speed input
of 0 when a stop flag is seen and then starts to accelerate to

continue with the path when vx gets close to 0. When the final
stop flag is discovered the vehicle reverses the engines and the
simulation is aborted when vx got close to 0.

B. Hardware-in-the-Loop Simulation

To test and verify the path generator, path planner, and
the MPC before connecting with the RCV, Hardware-in-the-
Loop (HIL) simulations are performed. This is done using
Speedgoat’s Mobile real-time target machine (SGTM) [10],
and Simulink Real-Time [11]. The state space representation
of the bicycle model, in equations (6a) - (6f), are used to
build a model of the RCV in Simulink. The path generator,
path planner, and the MPC are loaded and run on the SGTM,
and HIL simulations are performed by connecting each of
the Controller Area Network (CAN) ports on the SGTM with
each other, the model and the controller sent and received
data on separate CAN ports.

The idea behind using HIL simulations is that the path
generator, path planner, and the MPC are connected to the
real-time target machine, and run as if they were connected
to the RCV.

Simulink Real-Time is used to load the Simulink model
of the RCV onto the real-time target machine. With the
path generator, path planner, and the MPC connected to the
real-time target machine, a simulation of the autonomous path
following can be run in real-time with Simulink Real-Time.

C. KTH Research Concept Vehicle

More information about the RCV can be found in [12],
[13]. The idea is to use the same controller used in the HIL-
Simulation and there should not be any differences for the
controller side of the system.

V. RESULTS

In order to test and verify the system a number of check-
points, based on a earlier manually driven test run is used.
This track can be seen in Figure 3. The task is to follow these
recordings as accurately as possible.

A. Hardware-in-the-Loop Simulation

The setup of the simulation is explained in subsection
IV-B. The trajectory of the simulated RCV and the target
path can be seen in Figure 4. The simulated path only

5

State Size Control Size Control Change

xmin x xmax umin u umax dumin du dumax

0 vx
30
3.6

-400 M 400 −400Ts dM 400Ts

-1 vy 1 -0.22 δ 0.22 −0.22Ts dδ 0.22Ts

-1 ψ̇ 1
-∞ x ∞
–∞ y ∞
−2π ψ 2π

Table IV
CONTROLLER CONSTRAINTS

X [m]
-20 0 20 40 60 80 100 120 140 160

Y
 [m

]

-80

-60

-40

-20

0

20

40

60

Actual Path
Simulated RCV Path

Figure 4. Resulting path of HIL-Simulation

t [s]
0 20 40 60 80 100 120

v x [m
/s

]

0

1

2

3

4

5

6

7

8

Figure 5. Velocity of the vehicle in HIL-Simulation

give a maximum deviation of 1.58 m from the path on the
Examination Track seen in Figure 3, which is during the
curve on the right-most end of the curve. The mean deviation
is 0.21 m. The vehicle is intended to stop at predesignated
points; it is not successfully able to stop due to the stopping

t[s]
0 20 40 60 80 100 120

v̇ x
[m

/s
2
]

-3

-2

-1

0

1

2

3

4

5

Figure 6. Longitudinal acceleration of the vehicle in HIL-Simulation

problem mentioned in subsection IV-A. The vehicle slows
down to vx ≈ 0 m/s as can be seen in Figure 5, but never
makes a complete halt.

In Figure 6 and 7, we find that the simulation does
not conform to the comfort constraints; the longitudinal
acceleration reaches 2 m/s2 while the set constraint is
1 m/s2. We find that these constraints do not seem
reasonable, however, these constraints mean that it would take
approximately 10 seconds to go from 30 km/h to 0 km/h, and
the same for 0-30 km/h. This is a very slow acceleration and
we question the accuracy of the numbers. The jerk appears
to be more important, but there does not exist a proper way
to measure the jerk from the RCV, and thus we question the
accuracy of those numbers as well.

B. Experimental
We were not able to perform a proper test on the test track

due to a combination of bad weather and time constraints, as
such there are not any experimental results.

VI. CONCLUSION

During this short project we have found that MPC is a
reasonable choice of controller to control a vehicle, mainly

6

t[s]
0 20 40 60 80 100 120

v̇ y
[m

/s
2
]

-10

-5

0

5

10

15

Figure 7. Lateral acceleration of the vehicle in HIL-Simulation

due to the ease of setting controller constraints. We were not
able to test the controller on the RCV due to time shortage; the
weather constrained us during the scheduled test and the RCV
got its wheels taken off shortly thereafter. The few preliminary
tests we were able to do suggest that it would be able to work.

REFERENCES

[1] K. D. Do, Z.-P. Jiang, and J. Pan, “A global output-feedback
controller for simultaneous tracking and stabilization of unicycle-type
mobile robots.” IEEE Transactions on Robotics, vol. 20, no. 3, pp.
589–594, 2004. [Online]. Available: http://dblp.uni-trier.de/db/journals/
trob/trob20.html#DoJP04

[2] A. P. Aguiar and J. P. Hespanha, “Trajectory-tracking and path-following
of underactuated autonomous vehicles with parametric modeling uncer-
tainty,” IEEE TRANS. ON AUTOMAT. CONTR, 2005.

[3] C. G. L. Bianco, A. Piazzi, and M. Romano, “Smooth motion
generation for unicycle mobile robots via dynamic path inversion.”
IEEE Transactions on Robotics, vol. 20, no. 5, pp. 884–891, 2004.
[Online]. Available: http://dblp.uni-trier.de/db/journals/trob/trob20.html#
BiancoPR04

[4] A. Piazzi, C. Guarino Lo Bianco, M. Bertozzi, A. Fascioli, and
A. Broggi, “Quintic g2-splines for the iterative steering of vision-
based autonomous vehicles,” Intelligent Transportation Systems, IEEE
Transactions on, vol. 3, no. 1, pp. 27–36, Mar 2002.

[5] P. Falcone, F. Borrelli, J. Asgari, H. Tseng, and D. Hrovat, “Predictive
active steering control for autonomous vehicle systems,” Control Systems
Technology, IEEE Transactions on, vol. 15, no. 3, pp. 566–580, May
2007.

[6] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron,
J. Diebel, P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau,
C. Oakley, M. Palatucci, V. Pratt, P. Stang, S. Strohband, C. Dupont,
L.-E. Jendrossek, C. Koelen, C. Markey, C. Rummel, J. van Niekerk,
E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. Ettinger,
A. Kaehler, A. Nefian, and P. Mahoney, “Stanley: The robot
that won the darpa grand challenge: Research articles,” J. Robot.
Syst., vol. 23, no. 9, pp. 661–692, Sep. 2006. [Online]. Available:
http://dx.doi.org/10.1002/rob.v23:9

[7] E. Wennerström, S. Nordmark, and B. Thorvald, Vehicle Dynamics.
KTH Royal Institute of Technology, 2011.

[8] P. Tomner, “Design and implementation of control and actuation for an
over-actuated research vehicle,” Master’s thesis, KTH Royal Institute of
Technology, 2014.

[9] A. L. O. O. A. S. Robert Ekman, Henrik Koponen, “Autonomous driving
and steering feedback rcv,” KTH Internal Report, January 2015.

[10] Speedgoat. Mobile Real-Time Target Machine. Accessed:
2014-11-19. [Online]. Available: http://www.speedgoat.ch/Products/
Real-timetargetmachines-Mobile.aspx

[11] Mathworks. Simulink Real-Time. Accessed: 2014-11-19. [Online].
Available: http://se.mathworks.com/products/simulink-real-time/

[12] O. Wallmark, M. Nybacka, D. Malmquist, M. Burman, P. Wennhage,
and P. Georén, “Design and implementation of an experimental research
and concept demonstration vehicle,” 2014.

[13] KTH Transport Labs. KTH Research Con-
cept Vehicle. Accessed: 2014-11-19. [Online]. Avail-
able: https://www.kth.se/en/forskning/forskningsplattformar/transport/
initiativ/t-labs/projects/kth-research-concept-vehicle-1.476469

http://dblp.uni-trier.de/db/journals/trob/trob20.html#DoJP04
http://dblp.uni-trier.de/db/journals/trob/trob20.html#DoJP04
http://dblp.uni-trier.de/db/journals/trob/trob20.html#BiancoPR04
http://dblp.uni-trier.de/db/journals/trob/trob20.html#BiancoPR04
http://dx.doi.org/10.1002/rob.v23:9
http://www.speedgoat.ch/Products/Real-timetargetmachines-Mobile.aspx
http://www.speedgoat.ch/Products/Real-timetargetmachines-Mobile.aspx
http://se.mathworks.com/products/simulink-real-time/
https://www.kth.se/en/forskning/forskningsplattformar/transport/initiativ/t-labs/projects/kth-research-concept-vehicle-1.476469
https://www.kth.se/en/forskning/forskningsplattformar/transport/initiativ/t-labs/projects/kth-research-concept-vehicle-1.476469

	Introduction
	Related Work
	System Design
	Vehicle Model
	Path Generator
	Path Planner
	Controller
	Linearization
	Discretization
	Numerical weights and constraints

	State Estimation

	Implementation
	Model and Vehicle Problems
	Hardware-in-the-Loop Simulation
	KTH Research Concept Vehicle

	Results
	Hardware-in-the-Loop Simulation
	Experimental

	Conclusion
	References

