Optimal Offset Assignment

Roberto Castañeda Lozano

rcas@sics,kth.se
Offset Assignment

- Classic compiler problem (> 20 years)
- Reorder variables stored in memory
 - minimize their address computation overhead
- Applies to processors with autoincrement mode:

 \[
 \begin{align*}
 &= \text{MEM}[r] \\
 &= \text{MEM}[r++] \\
 &= \text{MEM}[r--]
 \end{align*}

- reduces program size, popular in signal processors
Offset Assignment: Example

\[r = &a = \text{MEM}[r] \]
\[r = &b = \text{MEM}[r] \]
\[r = &d = \text{MEM}[r] \]
\[r = &b = \text{MEM}[r] \]
\[r = &c = \text{MEM}[r] \]
\[r = &a = \text{MEM}[r] \]
Offset Assignment: Example

\[r = \&a \]

\[= \text{MEM}[r] \]
Offset Assignment: Example

\[r = \&a \]
\[= \text{MEM}[r] \]

\[r = \&b \]
\[= \text{MEM}[r] \]
Offset Assignment: Example

\[r = \&a \]
\[\quad = \text{MEM}[r] \]
\[r = \&b \]
\[\quad = \text{MEM}[r] \]
\[r = \&d \]
\[\quad = \text{MEM}[r] \]
Offset Assignment: Example

\[
\begin{align*}
r & = \&a \\
& = \text{MEM}[r] \\
r & = \&b \\
& = \text{MEM}[r] \\
r & = \&d \\
& = \text{MEM}[r] \\
r & = \&b \\
& = \text{MEM}[r]
\end{align*}
\]
Offset Assignment: Example

\[r = \&a \]
\[= \text{MEM}[r] \]
\[r = \&b \]
\[= \text{MEM}[r] \]
\[r = \&d \]
\[= \text{MEM}[r] \]
\[r = \&b \]
\[= \text{MEM}[r] \]
\[r = \&c \]
\[= \text{MEM}[r] \]
Offset Assignment: Example

\[
r = &a \\
= \text{MEM}[r] \\
r = &b \\
= \text{MEM}[r] \\
r = &d \\
= \text{MEM}[r] \\
r = &b \\
= \text{MEM}[r] \\
r = &c \\
= \text{MEM}[r] \\
r = &a \\
= \text{MEM}[r] \\
\]
Offset Assignment: Example

\[r = &a \]
\[= \text{MEM}[r] \]

\[r = &b \]
\[= \text{MEM}[r] \]

\[r = &d \]
\[= \text{MEM}[r] \]

\[r = &b \]
\[= \text{MEM}[r] \]

\[r = &c \]
\[= \text{MEM}[r] \]

\[r = &a \]
\[= \text{MEM}[r] \]

- 6 address loads
Offset Assignment: Autoincrement

\[
\begin{align*}
 r &= \&a \\
 &= \text{MEM}[r] \\
 r &= \&b \\
 &= \text{MEM}[r] \\
 r &= \&d \\
 &= \text{MEM}[r] \\
 r &= \&b \\
 &= \text{MEM}[r] \\
 r &= \&c \\
 &= \text{MEM}[r] \\
 r &= \&a \\
 &= \text{MEM}[r]
\end{align*}
\]
Offset Assignment: Autoincrement

\[
\begin{align*}
 r &= \&a \\
 &= \text{MEM}[r++] \\
 r &= \&b \\
 &= \text{MEM}[r] \\
 r &= \&d \\
 &= \text{MEM}[r] \\
 r &= \&b \\
 &= \text{MEM}[r] \\
 r &= \&c \\
 &= \text{MEM}[r] \\
 r &= \&a \\
 &= \text{MEM}[r]
\end{align*}
\]
Offset Assignment: Autoincrement

\[r = \&a \]

\[= \text{MEM}[r++] \]

\[r = \&b \]

\[= \text{MEM}[r] \]

\[r = \&d \]

\[= \text{MEM}[r] \]

\[r = \&b \]

\[= \text{MEM}[r] \]

\[r = \&c \]

\[= \text{MEM}[r] \]

\[r = \&a \]

\[= \text{MEM}[r] \]
Offset Assignment: Autoincrement

\[r = \&a \]
\[= \text{MEM}[r++] \]
\[r = \&b \]
\[= \text{MEM}[r] \]
\[r = \&d \]
\[= \text{MEM}[r] \]
\[r = \&b \]
\[= \text{MEM}[r++] \]
\[r = \&c \]
\[= \text{MEM}[r] \]
\[r = \&a \]
\[= \text{MEM}[r] \]
Offset Assignment: Autoincrement

\[r = \&a \]
\[= \text{MEM}\[r++\] \]
\[r = \&b \]
\[= \text{MEM}\[r]\] \]
\[r = \&d \]
\[= \text{MEM}\[r]\] \]
\[r = \&b \]
\[= \text{MEM}\[r++\] \]
\[r = \&c \]
\[= \text{MEM}\[r]\] \]
\[r = \&a \]
\[= \text{MEM}\[r]\] \]
Offset Assignment: Autoincrement

\[
\begin{align*}
 r &= \&a \\
 &= \text{MEM}[r++] \\
 r &= \&b \\
 &= \text{MEM}[r] \\
 r &= \&d \\
 &= \text{MEM}[r] \\
 r &= \&b \\
 &= \text{MEM}[r++] \\
 r &= \&c \\
 &= \text{MEM}[r] \\
 r &= \&a \\
 &= \text{MEM}[r]
\end{align*}
\]

- 4 address loads
Offset Assignment: Better Memory Layout

- `r = &a` = `MEM[r++]`
- `r = &b` = `MEM[r++]`
- `r = &d` = `MEM[r--]`
- `r = &b` = `MEM[r]`
- `r = &c` = `MEM[r]`
- `r = &a` = `MEM[r]`
Offset Assignment: Better Memory Layout

\[r = \&a \]
\[= \text{MEM}[r++] \]

\[
\begin{array}{c}
a \\
b \\
d \\
c
\end{array}
\]
Offset Assignment: Better Memory Layout

\[r = \&a \]
\[= \text{MEM}[r++] \]

\[r = \&b \]
\[= \text{MEM}[r++] \]

\[r = \&d \]
\[= \text{MEM}[r--] \]

\[r = \&b \]
\[= \text{MEM}[r] \]

\[r = \&c \]
\[= \text{MEM}[r] \]

\[r = \&a \]
\[= \text{MEM}[r] \]
Offset Assignment: Better Memory Layout

\[
\begin{align*}
 r &= \&a \\
 &= \text{MEM}[r++] \\
 r &= \&b \\
 &= \text{MEM}[r++] \\
 r &= \&d \\
 &= \text{MEM}[r--]
\end{align*}
\]
Offset Assignment: Better Memory Layout

r = &a
= MEM[r++]

r = &b
= MEM[r++]

r = &d
= MEM[r--]

r = &b
= MEM[r]
Offset Assignment: Better Memory Layout

\[
\begin{align*}
 r &= \&a \\
 &= \text{MEM}[r++] \\
 r &= \&b \\
 &= \text{MEM}[r++] \\
 r &= \&d \\
 &= \text{MEM}[r--] \\
 r &= \&b \\
 &= \text{MEM}[r] \\
 r &= \&c \\
 &= \text{MEM}[r]
\end{align*}
\]
Offset Assignment: Better Memory Layout

\[
\begin{align*}
 \text{r} &= & \&\text{a} \\
 &= & \text{MEM}[\text{r}++] \\
 \text{r} &= & \&\text{b} \\
 &= & \text{MEM}[\text{r}++] \\
 \text{r} &= & \&\text{d} \\
 &= & \text{MEM}[\text{r}--] \\
 \text{r} &= & \&\text{b} \\
 &= & \text{MEM}[\text{r}] \\
 \text{r} &= & \&\text{c} \\
 &= & \text{MEM}[\text{r}] \\
 \text{r} &= & \&\text{a} \\
 &= & \text{MEM}[\text{r}]
\end{align*}
\]
Offset Assignment: Better Memory Layout

\[
\begin{align*}
r &= \&a \\
 &= \text{MEM}[r++] \\
r &= \&b \\
 &= \text{MEM}[r++] \\
r &= \&d \\
 &= \text{MEM}[r--] \\
r &= \&b \\
 &= \text{MEM}[r] \\
r &= \&c \\
 &= \text{MEM}[r] \\
r &= \&a \\
 &= \text{MEM}[r]
\end{align*}
\]

- 3 address loads
Offset Assignment: Optimal Approach

- Access Graph: transitions between variables
- Example for sequence (a, b, d, b, c, a):

Reduce to Traveling Salesman Problem (TSP) [Jünger and Mallach, 2013]
- Integer Programming (IP) approach
Offset Assignment: Optimal Approach

- Access Graph: transitions between variables
- Example for sequence (a, b, d, b, c, a):

Reduce to Traveling Salesman Problem (TSP) [Jünger and Mallach, 2013]

Integer Programming (IP) approach
General Offset Assignment

- Generalization to multiple address registers r_1, r_2, \ldots
- Two interdependent subproblems:
 - Offset Assignment: which ordering of vars in memory?
 - Register Assignment: which reg for each access?
General Offset Assignment: Example

\[r_1 = &a \]
\[r_1 = &b \]
\[r_2 = &d \]
\[r_1 = &b \]
\[r_2 = &c \]
\[r_1 = &a \]

\[\text{2 address loads} \]

\[a \]
\[b \]
\[c \]
\[d \]
General Offset Assignment: Example

\[r1 = \&a \]

\[= \text{MEM}[r1++] \]

\[r1 = \&b \]

\[r2 = \&d \]

\[r1 = \&b \]

\[r2 = \&c \]

\[r1 = \&a \]
General Offset Assignment: Example

\[
\begin{align*}
 r1 &= \&a \\
 &= \text{MEM}[r1++] \\
 r1 &= \&b \\
 &= \text{MEM}[r1] \\
 r2 &= \&d \\
 &= \text{MEM}[r2--] \\
 r1 &= \&b \\
 &= \text{MEM}[r1--] \\
 r2 &= \&c \\
 &= \text{MEM}[r2] \\
 r1 &= \&a \\
 &= \text{MEM}[r1] \\
\end{align*}
\]
General Offset Assignment: Example

\[
\begin{align*}
 r1 &= \&a \\
 &= \text{MEM}[r1++] \\
 r1 &= \&b \\
 &= \text{MEM}[r1] \\
 r2 &= \&d \\
 &= \text{MEM}[r2--] \\
\end{align*}
\]
General Offset Assignment: Example

\[
r1 = \&a = \text{MEM}[r1++]
\]

\[
r1 = \&b = \text{MEM}[r1]
\]

\[
r2 = \&d = \text{MEM}[r2--]
\]

\[
r1 = \&b = \text{MEM}[r1--]
\]
General Offset Assignment: Example

\begin{align*}
\text{r1} &= \&a \\
&= \text{MEM}[\text{r1}++] \\
\text{r1} &= \&b \\
&= \text{MEM}[\text{r1}] \\
\text{r2} &= \&d \\
&= \text{MEM}[\text{r2}--] \\
\text{r1} &= \&b \\
&= \text{MEM}[\text{r1}--] \\
\text{r2} &= \&c \\
&= \text{MEM}[\text{r2}]
\end{align*}
General Offset Assignment: Example

\[
\begin{align*}
r1 &= \&a \\
&= \text{MEM}[r1++] \\
r1 &= \&b \\
&= \text{MEM}[r1] \\
r2 &= \&d \\
&= \text{MEM}[r2--] \\
r1 &= \&b \\
&= \text{MEM}[r1--] \\
r2 &= \&c \\
&= \text{MEM}[r2] \\
r1 &= \&a \\
&= \text{MEM}[r1]
\end{align*}
\]
General Offset Assignment: Example

\[r1 = \&a \]
\[= \text{MEM}[r1++] \]
\[r1 = \&b \]
\[= \text{MEM}[r1] \]
\[r2 = \&d \]
\[= \text{MEM}[r2--] \]
\[r1 = \&b \]
\[= \text{MEM}[r1--] \]
\[r2 = \&c \]
\[= \text{MEM}[r2] \]
\[r1 = \&a \]
\[= \text{MEM}[r1] \]

\(2 \text{ address loads} \)
General Offset Assignment: Optimal Approach

- Optimal Register Assignment as a network flow problem [Gebotys 1997]
- For \((a_1, b_1, d, b_2, c, a_2)\), assuming offset \((a, b, c, d)\):

![Diagram of the network flow problem](image_url)
General Offset Assignment: Optimal Approach

- Optimal Register Assignment as a network flow problem [Gebotys 1997]
- For \((a_1, b_1, d, b_2, c, a_2)\), assuming offset \((a, b, c, d)\):
General Offset Assignment: Optimal Approach

- Optimal Register Assignment as a network flow problem [Gebotys 1997]
- For \((a_1, b_1, d, b_2, c, a_2)\), assuming offset \((a, b, c, d)\):

- IP approach that integrates:
 - TSP model (offset assignment)
 - flow network model (register assignment)

[Mallach and Castañeda, 2014]