
BT-trees
Designing for Hardware Transactional Memory

Lars Bonnichsen
DTU, Denmark

March 26, 2015

Motivation

Writing efficient parallel software is important and difficult:
Traditional solution: use fine grained synchronization, and
minimize synchronization overhead
Hardware transactional memory (HTM) promises to be simpler,
but it shown mixed results performance wise.

How can we exploit HTM most efficiently?
Can we benefit from HTM? (should we care about it?)

2 DTU Compute, Technical University of Denmark BT-trees March 26, 2015

Contributions

You can get extremely good results from HTM, if you reason about
how it works

I suggest 5 guidelines for exploiting HTM
Most of which are also good guidelines for traditional
synchronization

With the guidelines I developed an HTM-aware data structure,
BT-trees:

3x improvement over state of the art solutions without HTM
2x improvement over state of the art solutions with HTM

3 DTU Compute, Technical University of Denmark BT-trees March 26, 2015

Overview

Introduction
Transactional memory (Background)
Designing for HTM
The design of BT-trees
Evaluation

4 DTU Compute, Technical University of Denmark BT-trees March 26, 2015

Transactional memory

Transactions can implement arbitrary atomic regions

Example, two threads increment random counters atomically:

int counters[32];
#pragma omp parallel 2
{

i = randomInt(0, 31);
atomic { counters[i]++; } // Transaction

}
assert(sum(counters, 32) == 2);

Conflict if the threads concurrently increment the same counter.
Conflicts cause transactions to roll back all writes.

5 DTU Compute, Technical University of Denmark BT-trees March 26, 2015

Transactional memory (2)
Transactions can implement arbitrary atomic regions

Example, two threads increment random counters atomically:

char counters* = calloc(32, 1);
#pragma omp parallel 2
{

i = randomInt(0, 31);
atomic { counters[i]++; } // Transaction

}
assert(sum(counters, 32) == 2);

Transactions do not require manually allocating locks.
Transactions can give a speedup in this example, unlike locks.
Software transactional memory is slow.

6 DTU Compute, Technical University of Denmark BT-trees March 26, 2015

Hardware Transactional Memory (HTM)

Available in Intel Haswell, IBM Power 8.
Relatively low overhead (≈ 60 cycles)
Limited. Rolls back on: interrupts, system calls, large
transactions, debugger breakpoints, page faults, cache evictions,
TLB misses, or problematic instructions, such as division.

Roll backs for reasons other than than conflicts or interrupts are
deterministic

Retrying such transactions is guaranteed to fail
Normal code assumes that page faults eventually complete

atomic { counters[i]++; } // Transaction

7 DTU Compute, Technical University of Denmark BT-trees March 26, 2015

Synchronization

SLR lock-elision implement locks with a HTM fast path:
On lock(), try to start a transaction
On repeated transaction roll backs, acquire an actual lock
On unlock() abort transaction if the lock is held.

We use one lock per BT-tree, and hope it is enough to avoid roll
backs

8 DTU Compute, Technical University of Denmark BT-trees March 26, 2015

The 5 sins of transactions

Well behaved transactions only fail from:
1 False sharing
2 Writing to many cache lines
3 System calls and page faults
4 Reading frequently written cache lines
5 Letting a transaction continue long after its first visible write

The first 3 "sins" are bad under traditional synchronization, but
worse (cause aborts) under HTM.

The 4th "sin" may abort other transactions by causing conflicts.

The 5th "sin" may abort this transaction due to conflicts.

9 DTU Compute, Technical University of Denmark BT-trees March 26, 2015

The 5 sins of transactions (2)

Well behaved transactions only fail from:
1 False sharing
2 Writing to many cache lines
3 System calls and page faults
4 Reading frequently written cache lines
5 Letting a transaction continue long after its first visible write

Sin 1, 2, and 3 implies that spatial locality is extra important!

Sin 4 and 5 only occur when concurrent transactions truly share data

Transactions’ parallelism is only limited by true sharing (sin 4-5)
and restrictions in transactional memory support (sin 1-3)

10 DTU Compute, Technical University of Denmark BT-trees March 26, 2015

The 5 guidelines for applying transactions

Do what you always do to optimize parallel code, but especially:
1 Optimize spatial locality
2 Avoid reading frequently written data
3 Avoid system calls
4 Minimize time from first visible write to commit
5 Worry less about the size of critical sections

Let us design a concurrent data structure accordingly!

11 DTU Compute, Technical University of Denmark BT-trees March 26, 2015

BT-trees

class I<K> {
int size;
I* c[32]; K k[31];

};
class E<K, V> { K k; V v; };
class L<K, V> { E<K, V> e[32] };

Search tree.
Internal nodes (I)
have up to 32
children
Mapped key-value
pairs (E) stored in
leaf nodes (L)

Unordered array
of 32 key-value
pairs.

12 DTU Compute, Technical University of Denmark BT-trees March 26, 2015

BT-trees balancing

class I<K> {
int size;
I* c[32]; K k[31];

};
class E<K, V> { K k; V v; };
class L<K, V> { E<K, V> e[32] };

All operations:
Traverse the tree
Operate on leaf node
Balance nodes when
we notice they are
unbalanced

Split full nodes.
Merge
near-empty
nodes.

Tree grows and
shrinks when
mergeing and
splitting the root

13 DTU Compute, Technical University of Denmark BT-trees March 26, 2015

BT-trees features

class I<K> {
int size;
I* c[32]; K k[31];

};
class E<K, V> { K k; V v; };
class L<K, V> { E<K, V> e[32] };

High spatial locality
Most operations only
write to leaf nodes
Most reads are in
internal nodes
Balancing is
infrequent
Node operations can
be fully unrolled

14 DTU Compute, Technical University of Denmark BT-trees March 26, 2015

Experimental setup

Did the redesign improve HTM efficiency?
Compare against:

STL map synchronized with lock-elision
STL unordered_map synchronized with lock-elision

On a machine with recent software:
GCC 4.9.1, glibc 2.19, Ubuntu LTS Server 14.04.1

And hardware:
4-core Intel Xeon E3-1276 v3 @ 3.6 GHz

15 DTU Compute, Technical University of Denmark BT-trees March 26, 2015

Experiment
Meassure throughput, energy consumption, contention, etc as a
function of:

The number of threads.
The percentage of insert, remove, and search operations.
Range of keys (and expected size of the map)

prefill(map, (K * pInsert) / (pInsert - pRemove));
#pragma omp parallel
while (hasRunForLessThan5Seconds) {

key = randomInt(1, K);
op = randomDouble(0,1);
if (op < pSearch) map.search(k);
else if (op > (1 - pInsert)) map.insert(k, v);
else map.remove(k, v);

}

Experiment popularized by PPoPP’2014
16 DTU Compute, Technical University of Denmark BT-trees March 26, 2015

Results
Update; k = 100 Mixed; k = 100 Constant; k = 100

Update; k = 10000 Mixed; k = 10000 Constant; k = 10000

Update; k = 1000000 Mixed; k = 1000000 Constant; k = 1000000

0

10

20

30

40

0

20

40

0

50

100

150

0

10

20

30

40

50

0

20

40

60

0

20

40

60

80

0

10

20

30

0

10

20

30

40

0

10

20

30

40

 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Threads

T
hr

ou
gh

pu
t [

M
O

ps
 /

s]

DS Chromatic6 STL TB3 TBB

Lemming effect,
lock-elision breaks
under contention
BT are generally
faster than
Chromatic and STL
maps, and more
scalable than STL
maps and TBB

17 DTU Compute, Technical University of Denmark BT-trees March 26, 2015

Experimental setup (2)

Is coarse grained application of HTM competetive?
Compare against:

Chromatic6, a state of the art lock-free relaxed red-black tree
Java ConcurrentSkipListMap

On the same machine:
GCC 4.9.1, glibc 2.19, Ubuntu LTS Server 14.04.1, Oracle JDK
1.8.20, Oracle Server JRE 1.8.20

18 DTU Compute, Technical University of Denmark BT-trees March 26, 2015

Experimental setup (3)

Are BT-trees competetive with unordered maps?
Compare against:

Intel TBB concurrent_hash_map
Java ConcurrentHashMap
Scala TrieMap (aka CTries), a state of the art lock-free hash trie

On the same machine:
GCC 4.9.1, glibc 2.19, Ubuntu LTS Server 14.04.1, Oracle JDK
1.8.20, Oracle Server JRE 1.8.20,

19 DTU Compute, Technical University of Denmark BT-trees March 26, 2015

Conclusion

BT-trees are fast because they exploit speculation.
Multiway trees allow for intra thread speculation

Much more scalable than than other HTM based maps
Frequently read memory locations change infrequently

20 DTU Compute, Technical University of Denmark BT-trees March 26, 2015

	Main

