Nuclear Reactor Technology
Education and research activities in 2015

SKC Symposium, October 8-9 2015

Jan Dufek
KTH Royal Institute of Technology
School of Engineering Sciences
Dept. of Physics
jandufek@kth.se
Staff

Faculty Staff:
 Henryk Anglart, Prof., head
 Jan Dufek, Assistant Prof.
 Jean-Marie Le Corre, Affil. Faculty

Post-doc researchers:
 Haipeng Li, PhD

PhD students:
 Roman Thiele
 Reijo Pegonen
 Anders Riber Marklund
 Mattia Bergagio

Diploma work students:
 Boel Morenius (W., compl.)
 Jonathan Wäng (W., compl.)
 Jurij Kotchoubey (W., compl.)
 Lway Al-Maeeni (ABB, compl.)
 Karol Łuszczek (W.)
 Gustaf Holst (NRT)
 Börge Olsen (NRT)
 Aleix Fonellosa Caro (NRT)
Education: Courses

Thermal-Hydraulics in Nuclear Systems

6 ECTS
Course responsible: Henryk Anglart

Content:
- basics of thermodynamics, fluid mechanics and heat transfer
- two-phase flows
- critical heat flux
- critical flows
- thermo-mechanical interactions
- analysis of selected components
Education: Courses

Nuclear Reactor Technology

6 ECTS
Course responsible: Henryk Anglart

Content:

- operation principles of nuclear power plants
- design and analysis of reactor core
- balance-of-plant analysis
- estimation of safety margins
- plant transient analyses
- plant modeling with system codes
Education: Courses

Nuclear Reactor Dynamics and Stability

6 ECTS
Course responsible: Jan Dufek

Content:
- point kinetics and dynamics models
- reactivity feedbacks
- Doppler effect
- BWR stability
- core-wide oscillations
- regional oscillations
- two-phase flow instabilities
- density-wave instability

Out-of-Phase Oscillations (8)

The most dominant sub-critical mode \((m=1)\) is given as
\[
\phi_1(r, z, \theta) = J_1(3.83r / R)\sin(z / H)\sin \theta
\]
\(J_1\) - Bessel function of the first kind and first order

Fundamental mode
First sub-critical mode
Monte Carlo Methods and Simulations in Nuclear Technology

6 ECTS
Course responsible: Jan Dufek

Content:
- sampling procedures, error est., RNG
- general variance reduction techniques
- introduction to SERPENT and XS libraries
- analog MC simulations
- non-analog and criticality MC simulations
 - bias and convergence of the fission source
 - tallying procedures, geometry representation
 - variance reduction techniques
 - MC burnup and parallel calculations
Research: Topics

- **Henryk Anglart**: Development of experimental and computational methods for thermal-hydraulics in nuclear installations.
- **Jan Dufek**: Development of methods for MC neutronics and coupled simulations.
- **Haipeng Li**: CFD modeling of two-phase flow and heat transfer (NURESAFE, NORTHNET).
- **Roman Thiele**: Development of CFD methods and models (SKC) – *Detail presentation on Friday.*
- **Reijo Pegonen**: Development of new procedures for thermal-hydraulic simulations of the JHR (DEPTHS-JHR).
- **Anders Riber Marklund**: Development of methods for acoustic leak detection in sodium cooled systems (ALDESA).
- **Mattia Bergagio**: Experimental investigation of thermal mixing (SKC) – *Detail presentation on Friday.*
MSc:

Boel Morenius
Data acquisition and post-processing of a high time resolution local phase signal at the Westinghouse FRIGG facility

Jonathan Wäng
Validation of the Critical Flow Models in POLCA-T

Jurij Kotchoubey
POLCA-T Neutron Kinetics Model Benchmarking

Lway Al-Maeeni
Sub-cooled nucleate boiling flow cooling experiment in a small rectangular channel

PhD:

Roman Thiele (Dec 2015)
Mechanistic Modeling of Wall-Fluid Thermal Interactions for Innovative Nuclear Systems
Research: New journal publications

Research: New conference contributions

- **M. Bergagio**, Instrumentation for temperature and heat flux measurement on a solid surface under BWR operating conditions, In: Proceedings of the 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-16), 2015