Stockholm, 2016-03-22

Remissvar
Remiss av underlag inför beslut om riktlinjer för forskning och innovation på energiområdet för perioden 2017-2020
M2015/04264/Ee

Sammanfattning

- KTH stödjer energiministerns förslag om ökade resurser för energiforskning och poängterar att det sett ur ett klimatperspektiv krävs substantiell långsiktig satsning på energiforskning för att nå klimatmålen.

- KTH efterfrågar långsiktiga satsningar och en noggrann övervägd balans mellan forskning och innovation.

- KTH ser en brist på insatser för långsiktig kompetensutveckling och efterlyser ett tydligare fokus på finansiering av doktorander.

- KTH ser positivt på långsiktiga satsningar för samverkansforskning för att möjliggöra att hela doktorandprojekt (4-5 år) kan finansieras utan avbrott.

- KTH efterfrågar mer långsiktig finansiering av uppbyggda miljöer.

- KTH är av uppfattningen att en ökad internationell utblick är nödvändig för att stärka Sveriges internationella profil inom teknikutveckling och forskning.

KTH:s synpunkter på rapporten ”Helhetssyn är nyckeln”

Kompetensförsörjning

Med ökande krav på energisystemet ställs ökade krav på kompetensförsörjning för att nya lösningar skall kunna realiseras och bidra till nya arbetstillfällen och tillväxt i Sverige. En fortsatt nära samverkan mellan akademi, industri och myndigheter är en absolut förutsättning för en kontinuerlig utveckling av forskningsnära utbildning, och för att säkerställa den kompetensförsörjning som krävs för att klara omställningen på kort och lång sikt. Det nämns i rapporten att Energiforskningsprogrammet omfattar hela innovationssystemet (se s. 11). Där bör även utveckling av vår framtida nationella kompetensbas, speciellt i form av
doktorander, och framtida kompetencentrumsatsningar inkluderar. Utbildning av licentiater och doktorer behövs för att förse akademi, myndigheter och industri med kunskap som kan formuleras forskningsproblem, ta fram ny kunskap samt ha kapacitet att omsätta nya forskningsrön i praktiken. Detta är ytterst viktigt för att Sverige ska kunna omsätta energiforskning till innovation, och därmed bidra till lösning av miljöproblemen, stärka tillväxten och Anders konkurrenskraft på lång sikt. För att akademin ska kunna anställa en doktorand krävs finansiering i minst fyra år vilket måste beaktas.

Innovationssystemet

KTH håller i princip med om att samverkan med näringslivet säkerställer relevans och kvalitet. Dock ser vi ett allvarligt problem i att forskning som hamnar mellan det grundläggande och det industriära tenderar att prioriteras bort. Detta ger upphov till ett glöms i innovationssystemet, i och med att den explorativa tillämpade forskningen saknar förutsättningar (avsnitt 3.2).

KTH håller med om att demonstration är bra ur ett innovationsperspektiv, men balansen mellan utbildning, grundforskning, tillämpad forskning och demonstration behöver alltid beaktas. Den teknik som behövs för energiomställningen finns bara delvis idag. En långsiktig satsning mot de övergripande målen börde ha sin tyngdpunkt på att stödja grundläggande forskning som kopplar till tillämpad forskning för att kvalificera nya tekniker till önskade nivåer (avsnitt 5.1.1).

Samverkan

KTH vill särskilt betona vikten av långsiktiga samverkanssatsningar som utgör en av de mest kostnads effektiva formerna för behovsdriven forskning och innovation i nära samarbete mellan akademi, industri och myndigheter. Ett bra exempel är utbildningen i Fordonsteknik på KTH (Master in Vehicle Engineering) där det nu även ingår moment från transportanalys, miljöbedömningar och elektro- och kemiteknik, vilket har underlättats av samarbeten inom kompetencecentrum, Strategiska forsknings områden, Forum för långsiktig dialog och samverkan med strategiska partners (avsnitt 5.3).

KTH stöder incitament för ökad rörlighet, vilket är en mycket viktig del i kompetensutvecklingen hos medarbetare både på myndigheter, i industrin och på högskolorna.

Internationell utblick

Forskningens finansiering

KTH stöder energimyndighetens förslag om ökade resurser för energiforskning och poängerter att det sett ur ett klimatperspektiv krävs substantiell långsiktig satsning på energiforskning för att nå klimatmålen.

KTH instämmer i att tvådisciplinär forskning behövs för att möta de övergripande utmaningarna. Det är dock viktigt att poängerter att excellent tvådisciplinär forskning baseras på excellent disciplinär forskning som i sin tur är baserad på grundforskning som också behöver finansiering (avsnitt 5.1.2).

KTH vill påpeka att det är viktigt att starka uppbygda forskningsmiljöer får varaktig finansiering för en fortsatt forskning i hög internationell klass och samverkan med branschens parter. Energimyndigheten bör därför i möjligaste mån säkerställa långsiktig finansiering till sådana miljöer (avsnitt 5.1.4).

Det är viktigt att både utveckla och vidmakthålla infrastruktur. KTH efterlyser en riktad satsning till existerande testbäddar. Exempel är Skeppsholmens energi- och elsystem som ägs av Statens Fastighetsverk där både system, enskilda komponenter, byggnader och användande kan analyseras (avsnitt 5.1.1).

KTHs synpunkter på UP-rapporterna:

Bilaga UP-rapport Allmänna energisystemstudier

KTH vill framhäva vikten av att teknikdistribution och policy analyseras med systemanalysmodeller för att säkerställa att resurser är väl fördelade samt att kostnader och nytta är ordentligt övervägda. Dessa modeller bör ta hänsyn till samspel mellan olika naturresurser och miljöpåverkan t.ex. klimat, land, energi, vatten.

KTH vill gärna lyfta fram ett exempel på existerande modellarbete kring energisystem integrerat med miljö och andra hållbarhetsaspekter; UNECEs studier av "the climate-energy-land use-water-ecosystems nexus" som skulle kunna utvecklas till viktiga integrerade hållbarhetsstudier även i Sverige.

Bilaga UP-rapport Transportsystemet

KTH föreslår ett vidgat fokus av temaområdet Transportsystemet:

"Transportsystemet, som omfattar energi- och resurseffektivisering av transportsystemet, effektivisering av fordon ur ett livscykelbaserat energi- och resursperspektiv, omställning av fordon till att använda förnybara drivmedel, samt förnybara och resurseffektiva material."

KTH vill påpeka att det är viktigt att inte bara satsningar med helfordonsperspektiv prioriteras då komponentkunskap, t.ex. inom områdena elektriska drivsystem, energilager och fordonsteknik, är central för att möjliggöra den kompetensförsörjning som krävs till svensk fordonsindustri för att reellt bidra till realiseringen av en mer miljövänlig fordonsflotta (avsnitt 5.5).
Generellt vill KTH påpeka att den prioritering kring olika systemstudier av transportsystemet som presenteras i rapporten har ett nationellt fokus och inte är föranord med liknande verksamheter utanför Sverige. Detta riskerar forskningsresultatens relevans och därmed möjlighet att bidra till lösningar på transportsystemets utmaningar.

Bilaga UP-rapport Kraftsystemet

Ett område som saknas i rapporten är energieffektivisering t.ex. med hjälp av effekta elmotordrifter. Elmotorer står för en stor del av industrins elanvändning, och effektivare maskiner och drivsystem skulle leda till stora energibesparinger. Inom området har Sverige världslärande företag och forskning och det är av stor betydelse att aktiviteter prioriteras inom detta område. Området är självklart betydelsefullt även för transportsektorn.

KTH instämmer i att det finns behov av ytterligare forskning för att förstå sambandet mellan olika marknadsregler och denna påverkan på investeringar. Det är dock oklart vad som avses med "Marknadsmodellen" (s 9) i detta avsnitt 2.2.

I rapporten nämns att den tematiska plan för FoU som togs fram av Samordningsrådet för Smarta Elnät skall beaktas (se sid. 26). Det är av synnerlig vikt att så sker, eftersom den tematiska planen innefattar mer detaljerade rekommendationer gällande FoU än föreliggande UP-rapport.

KTH saknar en bra beskrivning av vattenkraftens balanserande roll för elkraftsystemet. Vattenkraftens roll behöver utvecklas för att möjliggöra introduktionen av andra förnyelsebara och intermittenta energikällor vilket kommer att innebära stora tekniska utmaningar i framtiden bl.a. av nya driftstrategier, utbyggnad av kraftnät och regleringsreservoarer samt en bättre samordning av elproduktionen över större marknadsområden än idag (avsnitt 4.2).
Solkraftens potential som den enskilt främsta framtida energikällan underskattas i rapporten både avseende el och energirika substanser (t ex vätet eller metanol), där den senare produktionen bedöms kunna kopplas till fixering av koldioxid.

Om Sverige har energiomställning som ambition behövs det en ökad satsning på forskning och utveckling av nya tekniker för omvandling av solljus till el eller bränslen (avsnitt 4.4).

Att havsenergi anges som ett exempel på område med behov av nyttänk är anmärkningsvärt eftersom Sverige med flera länder satsat inom området under många år, exempel på detta är Fortum’s vågkraftpark i Sotenäs kommun som redan är i drift (avsnitt 4.5).

Bilaga UP-rapport Byggnader i energisystemet

KTH vill framhålla att plusenergibyggnader kan skapas av befintlig teknik medan mer forskning behövs om framtidens energisystem. KTH föreslår därför en ändring av fokus från arkitektoniska och tekniska aspekter till mer teknik-jämnproduktion. Dagens tekniska system ryms inom den befintliga arkitekturen. Det viktiga är att de tekniska systemen designas så att de är möjliga att styra beroende på faktor, på realitetsmätdata och framtidsprognoser, samt att de kan kommunicera med boende och vice versa.

Fokusering på enskilda byggnadens energiprestanda leder ofta till suboptimeringar varför fokusering på energieffektivisering i byggnaden i större omfattning bör fokusera på effektivare användning av energiresurser på samhällsnivå. Optimal energianvändning på samhällsnivå förutsätter att energisystem och energitjänster utvecklas och används inom optimala systemgränser. Effektivare lösningar kan i många fall uppstå om optimeringen av energianvändning sker på nivån av t ex byggnadskluster och distrikt istället på nivån av enskilda byggnader (passivhus, nollenerghus etc.).

Begreppet energieffektivitet borde i förlängningen i större omfattning vara kopplat till den sammanlagda kvaliteten hos levererade energitjänster i förhållande till resursanvändning, kostnad, miljöpåverkan och sammanlagd brukarnyttja istället för att i som idag i första hand relatera till använda/omvandlade energimängder.

KTH rekommenderar att energikvalitetsfaktorer införs för utvärdering av energisystems, energitjänsters, byggnaders och byggda miljöns energieffektivitet. Det är också viktigt att effektiva verktyg för kontinuerlig mätning och utvärdering av byggnaders- (och ytterst byggda miljöns-) prestanda utvecklas under hela livscyklom.

Insatser på miljöprogrambyggnader är viktiga, men dessa utgör trots allt en mindre del av den samlade byggnadssummen (enligt SCB 22 % av det totala lägenhetsbeståndet). Mer fokus behövs på den svåra gruppen småhus som utgör 43 % av beståndet. Småhus är särskilt svåra att nå när det gäller energieffektivitet vilket gör att stora insatser krävs inom forskning för att nå målen uppsatta inom EU för energieffektivitet. Mer forskning behövs för att hitta metoder som kan bana väg för nytt tänkande och ny teknik anpassade för denna grupp av byggnader. Även forskning inom politiska styrmedel och beteende krävs (avsnitt 5.2).
Den primära handelsvaran i framtidens energisektor borde vara energitjänster (produkter) istället för energiföden/-mängder (råvara). Innovativa affärsmodeller och samverkansformer mellan aktörer borde utvecklas för att möjliggöra detta i ett marknadsbaserat samhälle.

KTH vill framhålla att det inte finns ett stort behov av att utveckla teknik och metoder för ventilation och uppvärmning av lågenergibyggnader eftersom kunskap redan finns på området och det dessutom har en marginell påverkan på den totala energianvändningen i byggnadssektorn (avsnitt 5.4). Fokus borde ligga på att utveckla tekniker och metoder för att implementera nya system i befintliga byggnader på ett kostnadseffektivt, inomhusklimatmässigt och arkitektoniskt bra sätt. Särskilt fokus behövs på teknik för värmeåtervinning (ventilation, avlopp).

Avsnittet om värnepumpar (sid. 27) pekar på ett bra sätt på de forskningsbehov som är aktuella.

Avsnittet om värmelagring är mycket kort samtidigt som det påpekas att det är en mycket viktig teknologi. Värmelagring i anknytning till bostäder och lokaler är en viktig teknik för balansen i ett framtida energisystem med stor andel förnybar energi. Här finns ett stort behov av teknikutveckling, både vad gäller komponenter/lagringsmedier och systemlösningar.

Kommuner och offentlig sektor är en stor användare av energi och KTH instämmer i Utvecklingsplattformens påpekade önskan om att kommunal medverkan i projekt borde kunna räknas som medfinansiering (avsnitt 6).

Bilaga UP-rapport Bränslebasera energisystem

KTH ser gärna ett större fokus på biobaserad ekonomi. Framförallt behövs integrering av produktion av nya och gamla biobaserade produkter, med energiutvinning i olika former, behandlas i programmens olika delar (och samordnas med andra forskningsmyndigheter). Detta nämns i Huvudrapporten under 4.3 *Ett resurseffektivt samhälle, men följs inte upp i UP-rapporterna Bränsle och Transport.*

Bilaga UP-rapport Energiintensiv industri

Kapitel 4, avsnittet om *Effektiv Energianvändning*, bör även ta med fokus på forskning kring metoder för att hantera energieffektivitet i produktionsprocessen. Sådana metoder måste väva ihop betende och teknik för att hitta generella arbetsätt som också uppmuntrar industrin att arbeta med denna aspekt.
Remissvaret har beretts av handläggare Jenny Wansellus, Research Office, på uppdrag av Kenneth Billqvist, avdelningschef för Research Office och i samråd med Dr Olga Kordas, föreståndare Energiplattformen. Övriga som lämnat bidrag till yttrandet är Prof Folke Björk, ABE skolan; Dr Joachim Claesson, ITM skolan; Prof Peter Göransson, SCI skolan; Prof Mark Howells, ITM skolan; Prof Lars Klooo, CHE skolan; Prof Ivo Martinac, ABE skolan; Prof Ulla Mörtberg, ABE skolan; Prof Lars Nordström, EES skolan; Dr Staffan Norrga, EES skolan; Prof Björn E Palm, ITM skolan; Prof Lars J Pettersson, CHE skolan; Dr Juliette Soulard, EES skolan; Dr Cecilia Sundberg, ABE skolan; Prof Lennart Söder, EES skolan; Prof Annika Stensson Trigell, SCI skolan; Jonas Anund Vogel, ITM skolan; Dr Jörgen Wallin, ITM skolan; Dr Oskar Wallmark, EES skolan; Prof Anders Wörman, ABE skolan.

[Signature]

Peter Gudmundson
Rektor