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Consider the system
y(t) = G(q)u(t) +H(g)e(t), (1)

where 6 € R", u; € R", y, € R? and ¢; € RP. The input is a filtered Gaussian process while the noise is a white
Gaussian process with covariance matrix A. In a closed-loop identification, using a controller F,(g), we have

M(t) = Su(Q)r(t) - Su(q)Fy(CI)H(Q)e(t)? 2
() = Sy(q)G(g)r(r) +5,(q)H (g)e(r), 3)
where S, (q) = (I+G(q)F,(q)) " and Sy(q) = (I+F;(q)G(g)) " in accordance to the set-up in Figure 1.
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Figure 1. The system set-up. Here, r(r) is the excitation signal, u(r) is the input signal, ¢(¢) is the
noise signal, y(r) is the output signal, and F,(¢), G(q) and H(q) are the transfer functions of the
system.

The spectrum of the input and output signal are
D, (@) = Su(e/®) D, (0)S (/) + Su(e/®) Fy (/) H (/)@ (@) (Su (/) Fy (/) H (e7?)) ¥, )
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where ¢ has been replaced by ¢/ and we used the fact that r(¢) and e(t) are uncorrelated. The spectra sprung from
the excitation signal r(¢) simply are
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In the following, we will consider a general spectrum @, = G(e/?)®,(®)G*(e/®).
The spectrum of the excitation signal is parameterized using a finite-dimensional parameterization given by

M .
D (0)= Y CiHB(), (8)
k=—M



where B_(z) = Bi(z "), C; € C™ and C", = (C})*. The expression of @, () then becomes

M
@, () = G(e/®) Z Ci B (e7?) | G* (), 9)
k=—M
Vectorizing (9) gives
~ ; T ~ M .
vec®, (0) = ((G*(e/w)) ®G(ejw)> Y vecCi%i(e?) . (10)
k=—M
The Kronecker product in (10) is
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Now consider the matrix
vec G(e/?) [vec G(ejw)]*
= [vec(G(e/?))G1,1(e77®) vec(G(e/?))Gri(e7®) -+ vec(G(e/?))Gui(e ) vec(G(e/?))G1a(e™7?)
vec (G(e/®))Gan(e77?) - vec(G(e/®))Guo(e /®) - Vec(G(ej‘*’))@n_’p@m)(e_j“’)] , (12)
which can be approximated by
. . Mg .
vecG(e/?) [vecG(e/®)] "~ Y. Cfe Ik,
k=—M,g

using finite dimensional parametrization. To see this, consider vec G(e/®) [vec G(ej“’)]* as a (power) spectrum. A
spectrum must be (a) Hermitian, (b) symmetric with respect to @ = 0, (c) positive semidefinite and (d) periodic with

period 27. All of these constraints are fulfilled for vec G(e/?) [vec G(e/?)]". We can then retrieve C} from the inverse
Fourier transform of the spectrum. That is

T
1 o L
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We then get
. . ° . Mg .
vecG(e/?) [vecG(e/®)]" = Y Cfe /%~ Y Cfe ik,
k=—co ke=—M,

for some M,. Here we have restricted ourselves to the exponential basis function, and consequently to an FIR-shaped
spectrum ®,.
The elements of (11) can be formed by suitably reshaping the columns of (12), leading to

My ) M .
vec D, () ~ Z C‘,‘fe_f“’k Z vecCre /9% | | (13)
k=—M, k=—M
where C',f is obtained from C,f . We can then express ®,(w) approximately as

Mg+M

Y G, (14)

k=—(Mg+M)



where C7 is in turn obtained from C,f and Cy. Note that the decision variable Cj; appears linearly in (14).
We consider upper and lower spectrum constraints of the form

DL (@) < B, () < P8 (@) for all .

con con
We can enforce them frequency-by-frequency using a grid, that is,
Mg+M
DLV (@) < Z Cie 79k < @lish(g,) fori=1,...,N,

con
ke=—(Mg+M)

Or, for the lower constraint, we can use the approximation

Mg
Blom()~ Y Gk,
k=—M,
and enforce
Mé’
Y (Ci—C)e 9% > 0 for all o,
k=—M,

using the KYP-lemma.

(Actually, MOOSE2 also handles non-Hermitian constraints. It then enforces the constraints element-wise and
frequency-by-frequency instead of as linear matrix inequalities. Of course, the resulting spectrum is forced to be
Hermitian.)



