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Consider the system

y(t) = G(q)u(t)+H(q)e(t), (1)

where θ ∈ Rn, ut ∈ Rm, yt ∈ Rp and et ∈ Rp. The input is a filtered Gaussian process while the noise is a white
Gaussian process with covariance matrix Λ. In a closed-loop identification, using a controller Fy(q), we have

u(t) = Su(q)r(t)−Su(q)Fy(q)H(q)e(t), (2)
y(t) = Sy(q)G(q)r(t)+Sy(q)H(q)e(t), (3)

where Su(q) = (I +G(q)Fy(q))−1 and Sy(q) = (I +Fy(q)G(q))−1 in accordance to the set-up in Figure 1.
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Figure 1. The system set-up. Here, r(t) is the excitation signal, u(t) is the input signal, e(t) is the
noise signal, y(t) is the output signal, and Fy(q), G(q) and H(q) are the transfer functions of the
system.

The spectrum of the input and output signal are

Φu(ω) = Su(e jω)Φr(ω)S∗u(e
jω)+Su(e jω)Fy(e jω)H(e jω)Φe(ω)(Su(e jω)Fy(e jω)H(e jω))∗, (4)

Φy(ω) = Sy(e jω)G(e jω)Φr(ω)(Sy(e jω)G(e jω))∗+Sy(e jω)H(e jω)Φe(ω)(Sy(e jω)H(e jω))∗, (5)

where q has been replaced by e jω and we used the fact that r(t) and e(t) are uncorrelated. The spectra sprung from
the excitation signal r(t) simply are

Φur(ω) = Su(e jω)Φr(ω)S∗u(e
jω), (6)

Φyr(ω) = Sy(e jω)G(e jω)Φr(ω)(Sy(e jω)G(e jω))∗. (7)

In the following, we will consider a general spectrum Φx = G̃(e jω)Φr(ω)G̃∗(e jω).
The spectrum of the excitation signal is parameterized using a finite-dimensional parameterization given by

Φr(ω) =
M

∑
k=−M

Cr
kBk(e jω), (8)



where B−k(z) = Bk(z−k), Cr
k ∈ Cm and Cr

−k = (Cr
k)
∗. The expression of Φx(ω) then becomes

Φx(ω) = G̃(e jω)

(
M

∑
k=−M

Cr
kBk(e jω)

)
G̃∗(e jω), (9)

Vectorizing (9) gives

vecΦx(ω) =
((

G̃∗(e jω)
)T ⊗ G̃(e jω)

)( M

∑
k=−M

vecCr
kBk(e jω)

)
. (10)

The Kronecker product in (10) is

(
G̃∗(e jω)

)T ⊗ G̃(e jω) =


G̃1,1(e− jω)G̃(e jω) G̃1,2(e− jω)G̃(e jω) · · · G̃1,p(p+m)(e− jω)G̃(e jω)
G̃2,1(e− jω)G̃(e jω) G̃2,2(e− jω)G̃(e jω) · · · G̃2,p(p+m)(e− jω)G̃(e jω)

...
...

. . .
...

G̃n,1(e− jω)G̃(e jω) G̃n,2(e− jω)G̃(e jω) · · · G̃n,p(p+m)(e− jω)G̃(e jω)

 . (11)

Now consider the matrix

vec G̃(e jω)
[
vec G̃(e jω)

]∗
=
[
vec(G̃(e jω))G̃1,1(e− jω) vec(G̃(e jω))G̃2,1(e− jω) · · · vec(G̃(e jω))G̃n,1(e− jω) vec(G̃(e jω))G̃1,2(e− jω)

vec(G̃(e jω))G̃2,2(e− jω) · · · vec(G̃(e jω))G̃n,2(e− jω) · · · vec(G̃(e jω))G̃n,p(p+m)(e− jω)
]
, (12)

which can be approximated by

vec G̃(e jω)
[
vec G̃(e jω)

]∗ ≈ Mg

∑
k=−Mg

Cg
k e− jωk,

using finite dimensional parametrization. To see this, consider vec G̃(e jω)
[
vec G̃(e jω)

]∗ as a (power) spectrum. A
spectrum must be (a) Hermitian, (b) symmetric with respect to ω = 0, (c) positive semidefinite and (d) periodic with
period 2π . All of these constraints are fulfilled for vec G̃(e jω)

[
vec G̃(e jω)

]∗. We can then retrieve Cg
k from the inverse

Fourier transform of the spectrum. That is

Cg
k ,

1
2π

π∫
−π

vec G̃(e jω)
[
vec G̃(e jω)

]∗
eiωkdω.

We then get

vec G̃(e jω)
[
vec G̃(e jω)

]∗
=

∞

∑
k=−∞

Cg
k e− jωk ≈

Mg

∑
k=−Mg

Cg
k e− jωk,

for some Mg. Here we have restricted ourselves to the exponential basis function, and consequently to an FIR-shaped
spectrum Φx.

The elements of (11) can be formed by suitably reshaping the columns of (12), leading to

vecΦx(ω)≈

(
Mg

∑
k=−Mg

C̃g
k e− jωk

)(
M

∑
k=−M

vecCr
ke− jωk

)
, (13)

where C̃g
k is obtained from Cg

k . We can then express Φx(ω) approximately as

Mg+M

∑
k=−(Mg+M)

Cx
ke− jωk, (14)



where Cx
k is in turn obtained from Cg

k and Cr
k. Note that the decision variable Cr

k appears linearly in (14).
We consider upper and lower spectrum constraints of the form

Φ
low
con(ω)≤Φx(ω)≤Φ

high
con (ω) for all ω.

We can enforce them frequency-by-frequency using a grid, that is,

Φ
low
con(ωi)≤

Mg+M

∑
k=−(Mg+M)

Cx
ke− jωik ≤Φ

high
con (ωi) for i = 1, . . . ,N,

Or, for the lower constraint, we can use the approximation

Φ
low
con(ω)≈

Mg

∑
k=−Mg

Ccon
k e− jωk,

and enforce

Mg

∑
k=−Mg

(Cx
k −Ccon

k )e− jωk ≥ 0 for all ω,

using the KYP-lemma.
(Actually, MOOSE2 also handles non-Hermitian constraints. It then enforces the constraints element-wise and

frequency-by-frequency instead of as linear matrix inequalities. Of course, the resulting spectrum is forced to be
Hermitian.)


