
MOOSE2: Model Based Optimal Input Design
Toolbox for MATLAB R© (version 2)

User’s Guide

Mariette Annergren Christian Larsson
mariette.annergren@ee.kth.se christian.y.larsson@scania.com

April 15, 2016

Contents
1 Introduction 4

1.1 MOOSE2 . 4
1.2 Problem formulation . 4
1.3 Quick tutorial . 5

1.3.1 Setting up the problem . 5

2 Using the toolbox 7
2.1 Installation of MOOSE2 . 7
2.2 Models . 7
2.3 Objective . 8
2.4 Decision variables . 9
2.5 Optimization problem . 9
2.6 Spectrum . 10
2.7 Constraints . 10

2.7.1 Spectrum constraints . 10
2.7.2 Power constraints . 11
2.7.3 Application constraints . 11
2.7.4 Quality constraints . 12
2.7.5 Ellipsoidal quality constraints 13

2.8 Controller . 14
2.9 Spectral factorization . 14
2.10 Solution . 14
2.11 Solver . 14
2.12 Help functions . 14

3 Implementation 14

4 Future work 15

5 Theoretical background 17
5.1 Dynamic system and model . 17
5.2 Prediction error method . 17
5.3 Spectrum of signals . 19

5.3.1 Finite dimensional parameterization 20
5.4 Input generation . 20
5.5 Input design constraints . 20

5.5.1 Application constraints . 20
5.5.2 Quality constraints . 21
5.5.3 Ellipsoidal quality constraints 22

5.6 Optimal input design problem . 23

Notation

det{X} determinant of a square matrix X

E{x} expected value of x

Eapp(γ) application ellipsoid evaluated for γ

ESI(α) system identification ellipsoid evaluated for α

η process-model parameters
FIR finite impulse response

λmax{X} largest eigenvalue of matrix X

M model
P covariance matrix of estimated parameters

Φx power spectrum of signal x

q time-shift operator
S true system

t time
θ process- and noise-model parameters

θ̂N estimated process- and noise-model parameters using N data points

θ
0 true process- and noise-model parameters

trace{X} trace of a square matrix X

Vapp(θ) application cost function evaluated at θ

ω frequency
X∗ complex conjugate transpose of matrix X

MOOSE2

1 Introduction

1.1 MOOSE2
MOOSE2 is a MATLAB R©-based toolbox for solving applications oriented input de-
sign problems. The difference between MOOSE2 and MOOSE is that the former is
function-based and uses YALMIP, a toolbox for modeling and optimization in MATLAB R©

[16], to solve the optimization problems while the latter is based on keywords and uses
cvx, a package for specifying and solving convex programs [7].

This user guide requires some knowledge about optimal input design. For a brief
theoretical background, introduction of the notation used and references, see Section 5.

1.2 Problem formulation
The system set-up considered in MOOSE2 is depicted in Figure 1. MOOSE2 handles
MIMO systems and closed-loop identification. However, some of the constraints are
limited to SISO systems and currently the parameters of the controller Fy are fixed.

G(q)Fy(q) Σ

H(q)

Σ

u(t) y(t)

e(t)

r(t)

Figure 1: The system set-up. Here, r(t) is the excitation signal, u(t) is the input signal,
e(t) is the noise signal, y(t) is the output signal, and Fy(q), G(q) and H(q) are the
transfer functions of the system.

The applications oriented input design problem has the following formulation in
MOOSE2:

minimize
Φr(ω)

ar

∫
π

−π

Φr(ω)dω +au

∫
π

−π

Φu(ω)dω +ay

∫
π

−π

Φy(ω)dω,

subject to user constraints.

Here, Φr is the spectrum of the excitation signal used in the identification experiment.
The symbols Φu and Φy denote the spectra of the input signal u and output signal
y, respectively, that originates from the excitation signal r. Note that in open-loop
identification, Fy = 0, we have r = u.

In addition to the objective function above, MOOSE2 supports the classical A-,
E- and D-optimality criteria. That is, the minimization of trace{P}, λmax{P}, det{P},
respectively, where P is the covariance matrix of the estimated parameters.

The constraints in the input design problem can be any number or combination of

4

1.3 Quick tutorial MOOSE2

1. Spectrum constraints:

rlb(ω)≤Φr(ω)≤ rub(ω),

ulb(ω)≤Φu(ω)≤ uub(ω),

ylb(ω)≤Φy(ω)≤ yub(ω).

2. Power constraints:

rpow
lb ≤

∫
π

−π

Φr(ω)dω ≤ rpow
ub ,

upow
lb ≤

∫
π

−π

Φu(ω)dω ≤ upow
ub ,

ypow
lb ≤

∫
π

−π

Φy(ω)dω ≤ ypow
ub .

3. Application constraints:

Vapp(θ)≤ 1/γa with probability α.

4. Quality (weighted trace) constraints:

trace(W (ω)P)≤ γq for all ω,

where
W (ω) =V (ω)V (ω)∗ for all ω.

5. Ellipsoidal quality constraints:

F(ω,η)≤ γe for all ω and η ∈ ESI ,

where

F(ω,η) =
(WnG(η)+Xn)

∗Yn(WnG(η)+Xn)+Kn

(WdG(η)+Xd)∗Yd(WdG(η)+Xd)+Kd
.

1.3 Quick tutorial
This tutorial presents the process of declaring and solving an optimal input design
problem in MOOSE2.

1.3.1 Setting up the problem

Consider input design for the system

y(t) = G(q,θ)+ e(t),

where

G(q,θ) = θ1u(t−1)+θ2u(t−2),

5

1.3 Quick tutorial MOOSE2

with true parameter values θ 0 = [10 − 9] and noise variance var{e} = λ = 1. The
identification experiment is to be done in open-loop. The objective is to solve the
optimization problem

minimize
Φu(ω)

1
2π

∫
π

−π

Φu(ω)dω

subject to ESI(0.95)⊆ Eapp(100)
Φu(ω)≥ 0, ∀ω

using an FIR parametrization of the spectrum with 20 lags, that is 20 coefficients in the
spectral density function defined in Section 5.3, 100 samples of data and the ellipsoidal
relaxation. A MATLAB R© implementation of the problem is as follows:

%% EXAMPLE OF PROBLEM SETTING
% ----- SYSTEM
theta0 = [10 -9];
A0 = 1;
B0 = theta0;
F0 = 1;
C0 = 1;
D0 = 1;
lambda = 1; % Variance of measurement noise
Ts = 1; % Sampling time
trueSystem = idpoly(A0,B0,C0,D0,F0,lambda,Ts);
% ----- APPLICATION REGION
VappH = hessian(Vapp,theta0);
gamma = 100; % Allowed application degradation
alpha = 0.95; % Confidence level of degradation
% ----- IDENTIFICATION MODEL
model = trueSystem;
Nident = 500;
% ----- OPTIMAL INPUT DESIGN PROBLEM
prob = oidProblem(model,Nident,’FIR’,20);
prob.constraints{1} = oidApplicationConstraint(VappH,gamma,alpha);
optH = solve(prob,[1 0 0]);

% Application cost where the estimate of theta(2) is important
function V = Vapp(theta)

theta0 = [10 -9];
V = norm(theta(2)-theta0(2),2);

end

The four blocks of code are:

• SYSTEM: The true model is set, along with its noise variance and sampling time.
See Section 2.2.

• APPLICATION REGION: The application set Eapp(100) is defined, along with
the confidence level α of the application performance degradation. See Section
2.7.3.

• IDENTIFICATION MODEL: The model to be estimated is defined and the
number of samples to use in the identification experiment is given. See Sec-
tion 2.2.

6

MOOSE2

• OPTIMAL INPUT DESIGN PROBLEM: Functions from MOOSE2 are used
to set-up and solve the input design problem. The first line creates an instance
(prob) of the optimal input design problem. The input spectrum is set to an FIR
with 20 lags. The second line adds the set constraint ESI(0.95) ⊆ Eapp(100) to
the problem prob. The third line solves the problem prob with the objective
function set to input power, that is E{u2}. The optimal spectral factor optH is
given which can be used to realize an input signal. See Section 2.5

2 Using the toolbox

2.1 Installation of MOOSE2
To install MOOSE2, download the toolbox catalog and add it to your MATLAB R© path.
The MATLAB R© version must be MATLAB R© 8.3 (R2014a) or newer. The toolbox
is based on YALMIP, a toolbox for modeling and optimization in MATLAB R© [16].
The YALMIP version must be 20130201 or above. The solver used in YALMIP is
SDPT3. Thus, you also need to have YALMIP and SDPT3 installed to be able to use
MOOSE2. Other solvers, for example SEDUMI, can be used as well but SDPT3 is
used in MOOSE2 by default.

To be able to run some of the examples available in the toolbox, you need to down-
load the MATLAB R© package “Adaptive Robust Numerical Differentiation” created by
John D’Errico [6]. The package contains the function hessian(), which is used to
define the ellipsoidal approximation of the application cost is the examples.

2.2 Models
Models of the type idpoly are supported by MOOSE2. For a detailed description of
the idpoly model, we refer to the System Identification Toolbox User’s Guide. The
idpoly model is defined as

M : A(q,θ)y(t) =
B(q)
F(q)

u(t)+
C(q,θ)
D(q,θ)

e(t), (1)

where A, B, C, D and F are polynomials, and q is the forward shift operator. The noise
signal e is a white Gaussian process with covariance matrix Λ. The unknown parameter
vector is denoted θ .

To declare M in MOOSE2 you use the command provided by the System Identifi-
cation Toolbox [15], that is

idpoly(A,B,C,D,F,Lambda,Ts)

where Ts is the sampling time.
MOOSE2 assumes that the model is fully parameterized. By fully parametrized

model we mean that all coefficients of the A-, B-, C-, D- and F- polynomials in the
model M are unknown and supposed to be estimated. That is, each coefficient is an
element in the parameter vector θ . When this is not the case, you can declare which
of the parameters in the model are known and which you need to estimate, that is
which are fixed and which are free. The declaration is done as described in the System
Identification Toolbox [15]. For instance the model used in Section 1.3 can be declared
as

7

2.3 Objective MOOSE2

% ----- SYSTEM
theta0 = [10 -9];
A0 = 1;
B0 = theta0;
F0 = 1;
C0 = 1;
D0 = 1;
lambda = 1; % Variance of measurement noise
Ts = 1; % Sampling time
trueSystem = idpoly(A0,B0,C0,D0,F0,lambda,Ts);
trueSystem.Structure.b.Free = [1 0]; % Only estimate theta0(1)

if we only want to estimate the first element of θ . That is, the first element of θ is
declared free and the second element is declared fixed.

The definition of the application region has to be modified accordingly as well,
since the Hessian no longer is a 2-by-2 matrix but a scalar. For example,
% ----- APPLICATION REGION
VappH = 0.01; % Hessian evaluated at true parameter
gamma = 100; % Allowed application degradation
alpha = 0.95; % Confidence level of degradation

Note however that, when quality and ellipsoidal quality constraints are imple-
mented, a fully parametrized model has to be considered.

2.3 Objective
There are several objective functions supported by MOOSE2. The first is a weighted
sum of the power of the excitation signal r, input signal u and output signal y, respec-
tively. That is,

ar

∫
π

−π

Φr(ω)dω +au

∫
π

−π

Φu(ω)dω +ay

∫
π

−π

Φy(ω)dω,

where ar, au and ay are some nonnegative scalars. The objective function is declared
when the solve-command is called. The second argument correspond to a vector
with coefficients ar, au and ay as elements, that is

solve(prob,[a_r,a_u,a_y])

In addition, there exists a possibility to separate the objective function into contribu-
tions coming from the excitation and noise signal, respectively. That is,

ar

∫
π

−π

Φr(ω)dω+aur

∫
π

−π

Φur(ω)dω +aue

∫
π

−π

Φue(ω)dω+

ayr

∫
π

−π

Φyr(ω)dω +aye

∫
π

−π

Φye(ω)dω,

where ar, aur , aue , ayr and aye are some nonnegative scalars and Φxz is the spectrum
contribution to Φx from signal z. The objective function is then declared as

solve(prob,[a_r,a_u_r,a_u_e,a_y_r,a_y_e])

MOOSE2 also supports A-, E- and D-optimality criteria. The objective functions for
the three criteria are stated in Table 1. The objective functions are declared in MOOSE2
as

solve(prob,’A’), solve(prob,’E’), solve(prob,’D’),

respectively.

8

2.4 Decision variables MOOSE2

Optimality criterion Objective function

A minimize trace{P}

E minimize λmax{P}

D minimize det{P}

Table 1: Objective function for A-, E- and D-optimality criteria. The matrix P is the
covariance matrix of the estimated parameters.

2.4 Decision variables
The decision variable in the input design problem is the spectrum of the excitation sig-
nal r used in the identification problem. To get a tractable optimization problem we use
finite dimensional parametrization of the spectrum. So, more specifically, the decision
variables are the spectrum parameters used to describe the excitation spectrum in the
finite dimensional setting. The spectrum type and number of spectrum parameters used
are defined by the user as described in Section 2.6.

2.5 Optimization problem
A problem instance of the sort described in Section 1.2 is constructed by any of the
following commands:

oidProblem(MODEL)

oidProblem(MODEL,N)

oidProblem(MODEL,N,type,M)

oidProblem(MODEL,N,type,M,C,cParam)

The arguments are

• MODEL: Model of the system, see Section 2.2.

• N: Number of samples to use in the identification experiment.

• type: Type of the input spectrum, see Section 2.6. (Currently MOOSE2 only
supports MA (FIR) spectra.)

• M: Number of lags or spectrum parameters, see Section 2.6.

• C: Controller for closed-loop design, see Section 2.8.

• cParam: Set to fixed for a fixed controller or free to include the controller
parameters in the design, see Section 2.8. (Currently MOOSE2 only supports
fixed controllers.)

Default values of the arguments are

N=1, type=’MA’, M=20, C=0, cParam=’fixed’ .

9

2.6 Spectrum MOOSE2

2.6 Spectrum
Only one type of input spectrum is supported by MOOSE2 at the moment. It is the MA
(FIR) spectrum, see Section 5.3. The spectrum is declared when calling oidProblem
in the following way:

oidProblem(model,Nident,’MA’,20)

The third argument declares the type of spectrum to use (you can also write ’FIR’).
The fourth argument declares how many lags to use, that is how many spectrum pa-
rameters to use. Here, it is set to 20.

2.7 Constraints
There are five different constraints available in MOOSE2. They are, as stated in Sec-
tion 1.2, spectrum, power, application, quality (weighted trace) and ellipsoidal quality
constraints.

The three latter constraints are declared as specific constraint-instances, say con.
The constraints can then be added to the constraints property of the oidProblem-
instance prob by writing

prob.constraints{i} = con

where i is a nonnegative scalar specifying the ith constraint.
In general, all constraints are implemented and solved using either the KYP lemma

or a frequency grid, see Section 5.5. However, it is the experience of the authors (and
has been noted by others as well) that using the KYP lemma is not numerically robust.
For small problems, say single-input-single-output systems with a handful parameters
and spectrum coefficients, the KYP implementation works well, but in general it is
recommended to use a well-chosen frequency grid instead when evaluating the different
constraints. See Section 4, for some related comments.

We describe how to declare the constraints using MOOSE2 in the following.

2.7.1 Spectrum constraints

We can impose upper and lower bounds on the excitation, input and output spectra.
That is,

rlb(ω)≤Φr(ω)≤ rub(ω),

ulb(ω)≤Φu(ω)≤ uub(ω),

ylb(ω)≤Φy(ω)≤ yub(ω).

Once an instance of oidProblem has been created, say prob, we can specify the
bounds by writing

prob.spectrum.signal.ub = signal_ub

prob.spectrum.signal.lb = signal_lb

The constraints are imposed on the excitation, input or output signal if signal is
exchanged with excitation, input or output, respectively. The first line de-
clares a frequency dependent upper bound on the spectrum. The second line declares a
frequency dependent lower bound on the spectrum.

10

2.7 Constraints MOOSE2

The bounds can be given in three different formats. They are state-space or transfer
functions, structure arrays or matrices. If

prob.spectrum.input.ub = input_ub

is declared, with input_ub being a linear time invariant model in state-space or trans-
fer function format, the following Hermitian linear matrix inequality is imposed:

Φu(ω)≤ uub(ω)uub(ω)∗ for all ω,

where uub(ω) = input_ub. If input_ub instead is defined as the structure array

input_ub=struct(’B’,freqResp,’w’,freq,’type’,’lmi’),

the constraint becomes the Hermitian linear matrix inequality

Φu(ω)≤ uub(ω),

where uub(ω) = freqResp and ω = freq. The inequality is imposed element-wise
if the structure field type is left empty or not set to lmi. The real and imaginary
part of each element are treated as separate inequalities. If input_ub is defined as
a matrix, the constraint is a Hermitian linear matrix inequality with a constant upper
bound with respect to ω ,

Φu(ω)≤ uub for all ω.

2.7.2 Power constraints

We can impose lower and upper bounds on all signal powers. That is,

rpow
lb ≤

∫
π

−π

Φr(ω)dω ≤ rpow
ub ,

upow
lb ≤

∫
π

−π

Φu(ω)dω ≤ upow
ub ,

ypow
lb ≤

∫
π

−π

Φy(ω)dω ≤ ypow
ub .

We specify the bounds by writing

prob.spectrum.signal.power.ub = signal_pow_ub

prob.spectrum.signal.power.lb = signal_pow_lb

As for spectrum constraints, the bounds are imposed on the excitation, input or output
signal if signal is exchanged with excitation, input or output, respectively.

2.7.3 Application constraints

The application constraint is defined using a function Vapp(θ) :Rn 7→R (the application
cost) and scalars γa and α . The constraint is

Vapp(θ)≤ 1/γa with probability α, (2)

11

2.7 Constraints MOOSE2

see Section 5.5.1. Since (2) might not be a convex constraint, we approximate it with
a convex constraint using the scenario approach or ellipsoidal approximation, see Sec-
tion 5.5.1.

The application constraints are declared using the command

con=oidApplicationConstraint(VappH,gamma_a,alpha).

The first argument is either a fat matrix with all the scenarios collected column-wise
and the last row of each column is the value of the application cost evaluated at the
corresponding scenario or the Hessian of the application cost evaluated at the true pa-
rameters θ 0. The former case uses the scenario approach and the latter case uses the
ellipsoidal approximation. The second argument is the bound γa and the third argument
is the probability α .

Note that MOOSE2 uses a transfer function model of the type idpoly in the in-
put design. Meaning, the first argument VappH must be formed in accordance to the
parameter ordering of idpoly, see the System Identification Toolbox [15]. Conse-
quently, if VappH has been calculated based on a state-space model, a suitable trans-
formation has to be made before it is used in MOOSE2.

For details regarding the application constraints, see, for example, [1, Ch. B.2.2],
[11, Ch. 2.3, 2.6, 3.3 and 3.4] and the references therein.

2.7.4 Quality constraints

The quality constraints are weighted trace constraints given on the form

trace(W (ω)P)≤ γq for all ω, (3)

where
W (ω) =V (ω)V (ω)∗ for all ω,

and P is the covariance matrix of the estimated parameters, see Section 5.2.
Two quality constraints that can be represented in the form of (3) are∥∥∥∥∥

∣∣∣∣ T (ω)

G0(ω)

∣∣∣∣2 dG∗(ω,θ0)

dθ
P

dG(ω,θ0)

dθ

∥∥∥∥∥
2

≤ γq, (4)∥∥∥∥∥
∣∣∣∣ T (ω)

G0(ω)

∣∣∣∣2 dG∗(ω,θ0)

dθ
P

dG(ω,θ0)

dθ

∥∥∥∥∥
∞

≤ γq, (5)

If the quality constraint (3) is on the form (4) or (5), we can declare it directly in
MOOSE2. We declare it directly in the sense that we only need to define T (ω) and not
V (ω). However, this direct declaration is only supported for SISO systems.

The quality constraint can be defined using the commands

con = oidQualityConstraint(V)

con = oidQualityConstraint(V,gamma_q)

con = oidQualityConstraint(V,gamma_q,wSamp)

con = oidQualityConstraint(T,gamma_q,wSamp,norm)

The first line defines constraint (3) with γq = 1. The second line defines constraint
(3) with an arbitrary γq ≥ 0. Both commands can be applied to MIMO systems. The

12

2.7 Constraints MOOSE2

third line gives the option to change how the infinite constraint (3) is transformed to
a finite dimensional constraint. The argument wSamp can be a vector of frequency
points where (3) is to be evaluated or the string ’KYP’ which uses the KYP lemma for
evaluating (3). For details on how to apply the KYP lemma to quality constraints, see
[9, Ch. 3.6.2]. By default, a uniform frequency grid on [0,π[is used with 20 frequency
points. This is found to be much more numerically robust than using KYP lemma. The
fourth line defines constraint (4) if norm is set to 2 and constraint (5) if norm is set
to inf. If declaring constraint (4), the argument wSamp is obsolete and can be left
empty ([]) since neither KYP lemma nor a frequency grid is used in the evaluation.
MOOSE2 instead calls the MATLAB R©-function covar to evaluate the left hand side
of the inequality in (4).

Note that MOOSE2 only allows for fully parametrized models when evaluating
quality constraints.

For a brief theoretical summary of the quality constraints described here see Sec-
tion 2.7.4. For a complete background see [9, Ch. 3.6] and the references therein.

2.7.5 Ellipsoidal quality constraints

The ellipsoidal quality constraints are given on the form

F(ω,η)≤ γe for all ω and η ∈ ESI(α), (6)

where

F(ω,η) =
(WnG(ω,η)+Xn)

∗Yn(WnG(ω,η)+Xn)+Kn

(WdG(ω,η)+Xd)∗Yd(WdG(ω,η)+Xd)+Kd
.

The inequality (6) has to be satisfied in the ellipsoid ESI(α) for all ω . The ellipsoidal
quality constraints are only supported for SISO systems with polynomial A(q,η) and
F(q,η). The parameter vector η consists of the parameters present in the transfer
function from the input to output, G(ω,η). That is, the parameters in the noise model
are not included.

The ellipsoidal quality constraint is declared using the commands

con =oidEllipsoidalQualityConstraint(Kd,Kn,Wd,Wn,Xd,...

Xn,Yd,Yn,gamma_e,alpha)

con =oidEllipsoidalQualityConstraint(Kd,Kn,Wd,Wn,Xd,...

Xn,Yd,Yn,gamma_e,alpha,wSamp)

The first eight arguments define F(ω,η). The ninth argument gamma_e is the upper
bound on F(ω,η) and the tenth argument is the probability α , see (6). The argument
wSamp can be a vector of frequency points where (6) is to be evaluated or the string
’KYP’ which uses the KYP lemma for evaluating (6). For details on how to apply
the KYP lemma to quality constraints, see [9, Ch. 3.7.2]. The constraint is evaluated
using a frequency grid. By default, a uniform frequency grid on [0,π] is used with 20
frequency points.

Note that MOOSE2 only allows for fully parametrized models when evaluating
ellipsoidal quality constraints.

For a short theoretical background of the ellipsoidal quality constraints described
in this section see Section 5.5.3. For a rigorous background see [9, Ch. 3.7] and the
references therein.

13

2.8 Controller MOOSE2

2.8 Controller
The controller needs to be specified as a linear time invariant transfer function. Cur-
rently, MOOSE2 only accepts controllers with fixed parameters. That is, parameters
that are not to be included as decision variables in the input design problem.

2.9 Spectral factorization
Once a MOOSE2 problem has been solved you can get the stable minimum phase
spectral factor of the optimal excitation spectrum. The spectral factor can be obtained
by calling

optH = solve(prob,[1,0,0])

Here, optH is the spectral factor.

2.10 Solution
The outputs of the MATLAB R©-command solve contains specific information about
your problem and its solution. The following command extracts all outputs of solve:

[optH,info,iF,optVal,signalPow,c,con] =...

solve(prob,[1,0,0])

Here, optH is the spectral factor, info is a structure array containing the information
given by YALMIP about the problem and the solution, iF is the information matrix,
optVal is the objective value, signalPow is a structure array containing the power
of all signals, c are the spectrum parameters and con are the constraints evaluated at
the optimal solution.

2.11 Solver
The default solver used in MOOSE2 is SDPT3. However, the user can specify all
sdp-settings available, including a different solver. This is done in accordance with
the yalmip-manual, by defining a structure array opts with the desired setting and
calling solve in the following way:

optH = solve(prob,[1,0,0],opts)

2.12 Help functions
Currently only one help function is included in MOOSE2 and it is the MATLAB R©-
function ellipse(). The function plots an ellipse and its center point given a matrix,
a point and the desired color of the plot. The function is used when displaying the
results from some of the examples given in the toolbox.

3 Implementation
The implementation of MOOSE2 uses the object-oriented programming capabilities
of MATLAB R©. The structure of the implementation is presented in Figure 2. The
design is built around a predefined set of interfaces for the necessary components of
the optimal input design problem.

14

MOOSE2

SpectraModels Constraints

MOOSE2 functions

YALMIP

SDPT3

MOOSE2

oidProblem

Figure 2: The structure of the MOOSE2 implementation. The user interacts with the
top layer through functions. The lower layers of MOOSE2 are used to define and store
the optimal input design problem. MOOSE2 relies on YALMIP and SDPT3 to solve
the optimization problem.

User interaction with MOOSE2 is done through a set of functions.
The central object is the class oidProblem where the input design problem is

stored. Every instance of oidProblem contains a model-, spectrum-, and one or
more constraint-instances.

Abstract classes are used for the model, spectrum and constraint classes to define
interfaces. This allows for easy implementation of new models, spectra and constraint
classes.

There is no optimization implemented in MOOSE2. Instead the toolbox relies on
external SDP solvers for solving the defined optimization problem. MOOSE2 is based
on YALMIP, a toolbox for modeling and optimization in MATLAB R© [16]. The default
solver used in YALMIP is set to SDPT3 [18].

4 Future work
To further develop MOOSE2, we have defined three main areas where future work is
needed. These areas are

1. numerical stability of implementation,

2. controller design,

3. multiple choices of input spectra.

The first area concerns numerical stability of the implementation. Based on the
authors experiences, the solution found in MOOSE2 using a frequency grid can be
quite sensitive in terms of the grid chosen. Currently, there is no method implemented

15

MOOSE2

in MOOSE2 that aids the user in choosing a frequency grid in an intelligent way nor is
there a warning installed to make the user aware of when numerical issues can occur.

In addition, the authors have also experienced numerical stability issues when us-
ing the KYP lemma. The linear matrix inequalities that occur when applying the KYP
lemma to the problems in MOOSE2 tend to be quite large even for small system sizes.
Consequently, solving these linear matrix inequalities become the bottle neck of solv-
ing the optimal input design problem. Also, we encountered numerical issues when
solving them. One remedy to the problems related to the KYP lemma might be to re-
formulate the problem structure in an intelligent way and send it directly to the solver
(sdpt3) or to actually tailor-make a specific solver for the considered problems. An-
other idea is to solve the problem for an adaptive frequency grid in a sequential manner
instead. However, currently, the author’s advice is to use a well-chosen frequency grid
when encountering problem with the KYP lemma.

The second area concerns controller design. That is, to enable the design of the
controller parameters as well as the spectrum parameters in MOOSE2.

The third area concerns multiple choices of input spectra. Currently we only al-
low MA (FIR) spectra. We would like to extend this to autoregressive, Laguerre and
multisine parametrization.

16

MOOSE2

5 Theoretical background
We give a short theoretical background to concepts used in MOOSE2.

The objective with application-oriented input design is to deliver a model that,
when used in the intended application, results in an acceptable performance. This
is achieved by constructing a particular input signal to be used in the system identifi-
cation experiment. The obtained model is highly dependent on the input signal used.
Thus, by designing the input we are in a way designing the model obtained from the
identification experiment.

5.1 Dynamic system and model
We consider a multivariate discrete time linear time invariant dynamic system. The
dynamic system can be approximated by a parametrized model. Given a structure, the
model response is expressed as

M (θ) : y(t) = G(q,θ)u(t)+ v(t), (7a)
v(t) = H(q,θ)e(t), (7b)

where y(t) is the output signal, u(t) is the input signal, e(t) is the white Gaussian
noise signal and v(t) is the filtered noise signal. The transfer functions G and H are
parameterized by θ ∈ Rn and q is the forward-shift operator.

The true system is assumed to be parametrized by the same structure as the model.
Thus, there exist parameters θ 0 such that the true output response of the system can be
written as

S : y(t) = G(q,θ 0)u(t)+ v0(t),

v0(t) = H(q,θ 0)e(t).

The unknown parameters are θ , the true values of the parameters are θ 0 and the
estimated parameters based on N observations are θ̂N . The observations consist of
observed output and input signal sequences, ZN = {y(t),u(t)}N

t=1.

5.2 Prediction error method
The prediction error method (PEM) [14] is a method of identifying the unknown param-
eters θ in the model (7). The parameter estimates are found by minimizing a criterion
function of the prediction error with respect to θ . The prediction error is defined as the
difference between the output of the true system and the output predicted by the model.
Based on the model structure (7), the one-step-ahead predicted output of the system is

ŷ(t|θ) = H−1(q,θ)G(q,θ)u(t)+
[
I−H−1(q,θ)

]
y(t).

Consequently, the one-step-ahead prediction error becomes

ε(t,θ) = y(t)− ŷ(t|θ) = H−1(q,θ) [y(t)−G(q,θ)u(t)] .

The criterion function to be minimized is denoted VN(θ ,ZN). The estimates are defined
as

θ̂N = arg min
θ

VN(θ ,ZN). (8)

17

5.2 Prediction error method MOOSE2

In MOOSE2 the criterion function is set to the quadratic criterion. That is,

VN(θ ,ZN) =
1

2N

N

∑
t=1

ε(t,θ)T
Λ
−1

ε(t,θ). (9)

It holds under mild conditions that the estimated parameters converge to the true
values with probability one as the number of observations tends to infinity [14]. We
also have, under the same conditions, that the sequence of random variables

N(θ̂N−θ
0)TV ′′N (θ

0,ZN)(θ̂N−θ
0)

converges in distribution to the χ2-distribution with n degrees of freedom [14]. Thus,
for a sufficiently large N, the estimates θ̂N are with a probability α contained inside the
ellipsoid

ESI(α) =

{
θ

∣∣∣∣ (θ −θ
0)TV ′′N (θ

0,ZN)(θ −θ
0)≤ χ2

α(n)
N

}
, (10)

where χ2
α(n) is the α-percentile of the χ2-distribution with n degrees of freedom. We

call ESI the system identification set.
The Hessian of the quadratic criterion function in (9) is

V ′′N (θ
0,ZN) =

1
N

N

∑
t=1

ŷ′(t|θ 0)Λ−1ŷ′(t|θ 0)T . (11)

We can rewrite expression (11) in the frequency domain using Parseval’s relation. We
get different expressions depending on if we perform open- or closed-loop identifica-
tion. Open-loop identification is when there is no feedback control of the system during
the identification experiment, that is, Fy = 0 in Figure 1. Closed-loop identification is
when there is feedback control (Fy 6= 0 in Figure 1). MOOSE2 handles both cases.
However, in closed-loop identification the parameters of the controller are assumed to
be fixed. We have

V ′′N (θ
0,ZN)=

1
2π

∫
π

−π

Γr(eiω ,Fy(eiω)),θ 0)(Λ−1⊗Φr(eiω))Γ∗r (e
iω),Fy(eiω),θ 0)dω+

1
2π

∫
π

−π

Γe(eiω ,Fy(eiω),θ 0)(Λ−1⊗Λ(eiω))Γ∗e(e
−iω ,Fy(eiω),θ 0)dω,

(12a)

where

Γr =

vec[F1
r]

...
vec[Fn

r]

 , Γe =

vec[F1
e]

...
vec[Fn

e]

 , (12b)

F i
r = H−1(θ 0)

dG(θ)

dθi

(
I +FyG(θ 0)

)−1
, (12c)

F i
e = H−1(θ 0)

(
dH(θ)

dθi
− dG(θ)

dθi

(
I +FyG(θ 0)

)−1
FyH(θ 0)

)
, for all i = 1 . . .n.

(12d)

18

5.3 Spectrum of signals MOOSE2

Here ⊗ is the Kronecker product, θi denotes the ith component of the vector θ and
vec[X] denotes a row vector containing the rows of the matrix X stacked on top of each
other. For details, see [2]. From expression (12), we can see that the Hessian is an
affine function of the excitation spectrum Φr(ω). With some abuse of notation and
language, we will in the rest of text only consider the input signal u and input spectrum
Φu(ω). If the system set-up is in closed loop these entities should be exchanged by
excitation signal r and excitation spectrum Φr(ω).

Thus, we can directly affect the shape of the system identification set and, conse-
quently, the estimates by designing a particular spectrum of the input signal.

The system identification set in (10) can be expressed using the Fisher information
matrix instead of the Hessian. The information matrix is defined as

IF =
1
N

N

∑
t=1

ŷ′(t|θ 0)Λ−1ŷ′(t|θ 0)T , (13)

[14]. Thus, we can write

ESI(α) =

{
θ

∣∣∣∣ (θ −θ
0)TIF(θ

0)(θ −θ
0)≤ χ2

α(n)
N

}
.

PEM can also be used with state space formulations of the system and model. For
details, see [12].

The covariance matrix of the estimated parameters is defined as P = NI−1
F .

5.3 Spectrum of signals
We saw in the previous section that the spectrum of the input signal used in the identi-
fication experiment affects the estimates. Thus, input design can be performed in terms
of its frequency characteristics by choosing the spectrum of the signal. The spectral
density of a stationary signal u can be written as

Φu(ω) =
∞

∑
k=−∞

ckBk(eiω), (14)

where the scalar basis functions {Bk(eiω)}∞
k=0 are proper, stable, and rational such

that B−k(eiω) = Bk(e−iω) and the real coefficients c−k = cT
k . MOOSE2 currently

only handles spectra that are shaped as an FIR filter. That is, the basis functions are
exponentials, Bk(eiω) = e−iωk. Consequently, the coefficients become the autocovari-
ance sequence of the input signal. That is, ck = E

{
u(t)u(t− k)T

}
, see for example

[17].
Some optimal input design problems can be formulated as convex optimization

problems with decision variables ck. The design is then a matter of finding the co-
efficients ck. There are two main difficulties with choosing them. First, the spectral
density of a stationary process is a non-negative entity. Therefore, the coefficients
must be chosen such that

Φu(ω)� 0, for all ω, (15)

for (14) to define a spectral density. Second, the constraint (15) is infinite dimensional
making it computationally impractical to work with. To simplify the problem, we
consider the partial expansion

Φu(ω) =
m−1

∑
k=−(m−1)

ckBk(eiω). (16)

19

5.4 Input generation MOOSE2

Hence, only the first m coefficients of (14) are used to define the spectrum. Two ap-
proaches for choosing the coefficients ck are partial correlation parameterization [10]
and finite dimensional parameterization. MOOSE2 uses the latter approach.

5.3.1 Finite dimensional parameterization

Finite dimensional parameterization requires that {ck}m−1
k=0 is chosen such that (16) is a

spectrum. It means that condition (15) must hold for the truncated sum (16). This can
be achieved in various ways, the most frequently used technique is an application of the
positive real lemma which springs from the Kalman-Yakubovich-Popov (KYP) lemma.

Lemma 1: If {A, B, C, D} is a controllable state-space realization of Φ+
r (ω) =

∑
m−1
k=0 ckBk(eiω). Then there exists a matrix Q = QT such that

K(Q,{A,B,C,D}),
[

Q−AT QA −AT QB
−BT QA −BT QB

]
+

[
0 CT

C D+DT

]
� 0, (17)

if and only if Φu(ω) = ∑
m−1
k=−(m−1) ckBk(eiω)≥ 0, for all ω.

Thus, the necessary and sufficient condition for (15) to hold for the truncated se-
quence is the matrix inequality (17), assuming a matrix Q exists. The matrix inequality
becomes a linear matrix inequality (LMI) in ck and Q if the only matrices that are
linearly dependent on the coefficients ck are C and D.

5.4 Input generation
When the input spectrum is found, a corresponding time realization of the signal has
to be generated. The realization is then used to excite the system in the identification
experiment. One possible input generation is to let the input signal be white Gaussian
noise filtered through a transfer function matrix. The matrix is chosen such that the
obtained signal has the required spectrum. The matrix design is a problem of minimum
phase spectral factorization, as such, it has many known solutions, see for example [17].
MOOSE2 does not provide tools for input generation.

5.5 Input design constraints
Three different classes of input design constraints are discussed. They are related to
the application and quality of the model.

5.5.1 Application constraints

The input signal needs to be designed with the intended application of the model in
mind. To enable this, a measure of how well the model performs is defined. The degra-
dation in performance due to a mismatch between the model and the system is specified
by an application cost function. The cost emphasizes an important performance quality
of the system. Examples of such qualities are the sensitivity function and the closed-
loop output response. The cost function is denoted Vapp(θ). The minimal value of Vapp
is equal to zero and is achieved when the true parameters are used in the function. If
Vapp(θ) is twice differentiable in a neighborhood of θ 0, these conditions are equivalent
to the constraints Vapp(θ

0) = 0, V ′app(θ
0) = 0 and V ′′app(θ

0)� 0.

20

5.5 Input design constraints MOOSE2

An increased value of the application cost reflects an increased degradation in per-
formance. The maximal allowed degradation is defined by

Vapp(θ)≤
1
γ
, (18)

where γ is a positive scalar. The parameters fulfilling inequality (18) are called accept-
able parameters and they belong to the application set. The set is defined as

Θapp(γ) =

{
θ |Vapp(θ)≤

1
γ

}
.

The concept of using application sets comes from [8] and [3].
We want the estimated parameters to give a model with acceptable performance.

Thus, one part of the objective of optimal input design is to guarantee, with high
probability, that the estimated parameters are acceptable parameters. This condition
is equivalent to requiring that

ESI(α)⊆Θapp(γ), (19)

for specific values of α and γ . The constraint (19) is not necessarily convex, conse-
quently it needs to be approximated by one. Two methods of doing this are the scenario
approach and the ellipsoidal approximation. MOOSE2 supports both methods.

Scenario approach The requirement that the system identification set lies inside the
application set is relaxed. It is enough that a finite number of the estimated parameters
are contained inside Θapp. These parameters are chosen from Θapp, preferably close to
its boundary, according to a given probability distribution. It is shown in [5] that if

(θi−θ
0)TIF(θi−θ

0)≥ χ2
α(n)γ

N
Vapp(θi) for i = 1 . . .M < ∞,

where θi ∈ Θapp, then ESI lies inside Θapp with a high probability. For more details,
see for example [13].

Ellipsoidal approximation The application cost is approximated by its second order
Taylor expansion centered around the true parameters. The corresponding application
set becomes an ellipsoidal region. Thus, Θapp ≈ Eapp for θ close to θ 0, where

Eapp(γ) = {θ | (θ −θ
0)TV ′′app(θ

0)(θ −θ
0)≤ 1/γ}. (20)

It is shown in [8] that ESI lies inside Eapp if and only if IF � χ2
α(n)γV ′′app(θ

0)/N. Thus,
constraint (19) can be approximated as

IF � χ
2
α(n)γV ′′app(θ

0)/N. (21)

For more details, see for example [8].

5.5.2 Quality constraints

One, of several, performance criteria of input design is the weighted trace constraint

trace(W (ω)P)≤ γq for all ω,

21

5.5 Input design constraints MOOSE2

where
W (ω) =V (ω)V (ω)∗ for all ω,

where P is the inverse of the Fisher’s information matrix IF . An example of a quality
constraint is given in Example 5.1.

Example 5.1 Consider the classical robust stability condition

‖∆(ω,θ)‖∞ < 1, (22)

with

∆(ω,θ) = T (ω)
G(ω,θ 0)−G(ω,θ)

G(ω,θ)
,

and T (ω) equal to the complementary sensitivity function. A way of limiting the dis-
crepancy obtained due to model mismatch is to limit the variance of ∆(ω,θ). The
variance constraint can be expressed as

‖Var ∆(ω,θ)‖∞ < 1,

with

Var ∆(ω,θ)≈ |T (ω)/G0(ω)|2 dG∗(iω,θ0)

dθ
P

dG(ω,θ0)

dθ
,

which in turn can be formulated as a weighted trace constraint. We simply set W (ω)
equal to

|T (ω)/G0(ω)|2 dG(iω,θ0)

dθ

dG∗(ω,θ0)

dθ
,

see [9, Ex. 3.12].

In MOOSE2, quality constraints are evaluated either by sampling the frequency range
or by applying the KYP lemma. For more details, see [9, Ch. 3.6].

5.5.3 Ellipsoidal quality constraints

In ellipsoidal quality constraints, we require that the quality constraints are fulfilled for
models within the system identification set ESI . That is,

F(ω,η)≤ γe for all ω and η ∈ ESI(α), (23)

where

F(ω,η) =
(WnG(ω,η)+Xn)

∗Yn(WnG(ω,η)+Xn)+Kn

(WdG(ω,η)+Xd)∗Yd(WdG(ω,η)+Xd)+Kd
.

The parameter vector η consists of the parameters only present in the transfer function
from the input to output, G(ω,η). That is, the parameters in the noise model are not
included. An example of ellipsoidal quality constraints is given in Example 5.2.

Example 5.2 Consider once again the classical robust stability criterion (22) in Exam-
ple 5.1. Instead of approximating the criterion with a variance constraint, we require
it to be fulfilled within the system identification set. That is

max
ω,θ∈ESI

|∆|2 ≤ γe. (24)

22

5.6 Optimal input design problem MOOSE2

To capture (24) within the given framework, we simply set Wn(ω) =Wd(ω) = 1, Xn =
−G(θ 0), Yn = T ∗T and Kn = Kd = Xd = 0 which gives

F(ω,η) =
|G(η)−G(η0)|2|T |2

|G(η)|2
= |∆|2,

see [9, Ex. 3.13].

In MOOSE2, ellipsoidal quality constraints are evaluated either by sampling the fre-
quency range or by applying the KYP lemma. For more details, see [9, Ch. 3.7].

5.6 Optimal input design problem
We want the estimated parameters to give a model with acceptable performance in
terms of application and quality. Let fcost denote the cost related to the experiment.
The complete objective of optimal input design can then be stated as the optimization
problem

minimize
ck

fcost(ck),

subject to spectrum constraints,
power constraints,
application constraints,
quality constraints,
ellipsoidal quality constraints.

The optimization problem can be approximated by a convex formulation using scenario
approach, ellipsoidal approximation, sampled frequency range and the KYP lemma.
The benefit is that a convex optimization problem can be solved accurately and effi-
ciently [4].

23

REFERENCES MOOSE2

References
[1] M. Annergren. ADMM for l1 regularized optimization problems and applications

oriented input design for MPC, 2012.

[2] M. Barenthin Syberg. Complexity Issues, Validation and Input Design for Con-
trol in System Identification. PhD thesis, KTH Royal Institute of Technology,
December 2008. TRITA-EE 2008:055.

[3] X. Bombois, G. Scorletti, M. Gevers, P. M. J. Van Der Hof, and R. Hildebrand.
Least costly identification experiment for control. Automatica, 42:1651–1662,
2006.

[4] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, 2003.

[5] G. C. Calafiore and M. C. Campi. The Scenario Approach to Robust Control
Design. IEEE Transactions on Automatic Control, 51(5):742–753, May 2006.

[6] J. D’Errico. Adaptive robust numerical differentiation.
http://www.mathworks.com/matlabcentral/fileexchange/13490-adaptive-robust-
numerical-differentiation, June 2011.

[7] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex program-
ming, version 1.21. http://cvxr.com/cvx, April 2011.

[8] H. Hjalmarsson. System identification of complex and structured systems. Euro-
pean Journal of Control, 15(34):275 – 310, 2009.

[9] H. Jansson. Experiment design with applications in identification for control.
PhD thesis, KTH Royal Institute of Technology, 2004.

[10] H. Jansson and H. Hjalmarsson. Input Design via LMIs Admitting Frequency-
wise Model Specifications in Confidence Regions. IEEE Transactions on Auto-
matic Control, 50(10):1534–1549, 2005.

[11] C. A. Larsson. Toward applications oriented optimal input design with focus on
model predictive control, 2011.

[12] C. A. Larsson. Toward applications oriented optimal input design with focus on
model predictive control. September 2011. Licentiate Thesis.

[13] C. A. Larsson, C. R. Rojas, and H. Hjalmarsson. MPC oriented experiment de-
sign. In Proceedings of the 18th IFAC World Congress, Milano., August 2011.

[14] L. Ljung. System Identification: Theory for the User. Prentice Hall, Upper Saddle
River, New Jersey, 2nd edition, 1999.

[15] L. Ljung. System identification toolbox: User’s guide. The MathWorks, Inc.,
2010.

[16] J. Löfberg. Yalmip : A toolbox for modeling and optimization in MATLAB. In
Proceedings of the CACSD Conference, 2004.

[17] T. Söderström. Discrete-Time Stochastic Systems: Estimation and Control.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2002.

24

REFERENCES MOOSE2

[18] K. C. Toh, M.J. Todd, R.H. Tütüncü, and R. H. Tutuncu. SDPT3- a Matlab soft-
ware package for semidefinite programming. Optimization Methods and Soft-
ware, 11:545–581, 1998.

25

